Regular Expressions



Recap from Last Time



Regular Languages

* A language L is a reqgular language itt
there is a DFA D such that AD) = L.

« Theorem: The following are equivalent:

« L is a regular language.
e There is a DFA for L.
e There is an NFA for L.



Language Concatenation

e [fw € X*¥ and x € X*, then wx is the
concatenation of w and x.

* If L1 and L2 are languages over 2, the
concatenation of L. and Lz is the language LiL>
defined as

Lilz ={wx|we€lLiand x € L2 }

« Example: if L1 = { a, ba, bb } and L> = { aa, bb },
then

L.l.> = { aaa, abb, baaa, babb, bbaa, bbbb }



[.ots and Lots of Concatenation

* Consider the language L = { aa, b }
* Lo = ¢}

 LL=121is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

 LLL = L3 is the set of strings formed by concatenating triples of
strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

« LLLL = L4 is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,
baabb, bbaaaa, bbaab, bbbaa, bbbb}



The Kleene Closure

 An important operation on languages is
the Kleene Closure, which is defined as

L*={we€e2X* | dn € N.w € Ln }



Closure Properties

« Theorem: If L. and L2 are regular
languages over an alphabet X, then so are

the following languages: Quick check 1:
. Z Let 2 = {1, 2, 3, a, b, c}.
1 Let L, = {aa, b}, L, = {33, 2}
e [1 U Lo be languages over 2.
e 1N Lo Name one string in L.
e T1- Name one string notin L.

o [1%¥

 These properties are called closure
properties of the regular languages.
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Closure Properties

« Theorem: If L. and L2 are regular
languages over an alphabet X, then so are

the following languages: Quick check 3:
— Let 2 = {1, 2, 3, a, b, c}.
* Ly let L, = {aa, b}, L, = {33, 2}
e [1 U Lo be languages over 2.
e [N Lo Name one string in L1 n L.
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11,2
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Closure Properties

« Theorem: If L. and L2 are regular
languages over an alphabet X, then so are

the following languages: Quick check 4:
— Let 2 = {1, 2, 3, a, b, c}.
* La Let L, = {aa, b}, L, = {33, 2}
e [1 U Lo be languages over 2.
e [N Lo Name one string in Lilo2.
e 11 Name one string notin Lilo.
112

o [1%¥

 These properties are called closure
properties of the regular languages.



Closure Properties

« Theorem: If L. and L2 are regular
languages over an alphabet X, then so are

the following languages: Quick check 5:
— Let 2 = {1, 2, 3, a, b, c}.
* Ly let L, = {aa, b}, L, = {33, 2}
e [1 U Lo be languages over 2.
e [N Lo Name one string in L1*.
e T11.- Name one string notin L1*,

o [1%¥

 These properties are called closure
properties of the regular languages.



New Stuff!



Another View of Regular Languages



Rethinking Regular Languages

 We currently have several tools for
showing a language L is regular:

e Construct a DFA for L.
e Construct an NFA for L.

 Combine several simpler regular languages
together via closure properties to form L.

 Today we expand on this last idea.



Constructing Regular Languages

» Idea: Build up all regular languages as
tollows:

« Start with a small set of simple languages we
already know to be regular.

« Using closure properties, combine these
simple languages together to form more
elaborate languages.

* This is a bottom-up approach to the
regular languages.



Constructing Regular Languages

» Idea: Build up all regular languages as
follows:

* Start wj
already

 Using c
simple |
elabora

* This is a
regular |




Regular Expressions

* Regular expressions are a way of describing a language
via a string representation.

* They're used just about everywhere:

« They’re built into the JavaScript language and used for data
validation.

 They’'re used in the UNIX grep and flex tools to search files
and build compilers.

 They're employed to clean and scrape data for large-scale
analysis projects.

« Conceptually, regular expressions are strings describing
how to assemble a larger language out of smaller pieces.



Atomic Regular Expressions

* The regular expressions begin with three
simple building blocks.

* The symbol @ is a regular expression that
represents the empty language 4.

 For any a € %2, the symbol a is a regular
expression for the language {a}.

 The symbol € is a regular expression that
represents the language {¢}.

 Remember: {€} # O!
* Remember: {&€} # &!



Compound Regular Expressions

« If R, and R, are regular expressions, R;R, is a

regular expression for the concatenation of
the languages of R, and R,.

« If R, and R, are regular expressions, R; U R, is

a regular expression for the union of the
languages of R; and R,.

* If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

* If R is a regular expression, (R) is a regular
expression with the same meaning as R.



Operator Precedence

 Here’s the operator precedence for
regular expressions:

(R)
R*
RlRZ
R, UR,

 So ab*xcUd is parsed as ((a(b*x))c)ud



Regular Expression Examples

* The regular expression trickUtreat represents the
language

{ trick, treat }.

* The regular expression booo* represents the
regular language

{ boo, booo, boooo, ... }.

* The regular expression candy! (candy!)x
represents the regular language

{ candy!, candy!candy!, candy!candy!candy!,

.. }.



Regular Expressions, Formally

 The language of a regular expression is the
language described by that regular expression.

 Formally:
« Z(g) = {¢}
c (D) =0
* Z(a) = {a}

« Z(RiR;) = Z(R;) Z(R,)

*» Z(R; UR,) =Z(R;) UZ(R,)
+ Z(R¥) = Z(R)*

* Z((R)) = Z(R)

Worthwhile activity: Apply this
recursive definition to

a(bUc) ((d))

and see what you get.




Regular Expressions, Formally

 The language of a regular expression is the
language described by that regular expression.

* Formally:
+ () = {g}
c () =0
* Z(a) = {a}

« Z(RiR;) = Z(R;) Z(R,)

*» Z(R; UR,) =Z(R;) UZ(R,)
+ Z(R¥) = Z(R)*

* Z((R)) = Z(R)

Regex quick check:
Let 2 = {a, b, ¢, d}.

Let L, = L(a(bUc) ((d))) be
a language over 2.

Name one string in L.

Name one string notin L.




Designing Regular Expressions

e JetX2 ={a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.



Designing Regular Expressions

e JetX2 ={a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.

(a U b)*aa(a U b)*



Designing Regular Expressions

e JetX2 ={a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.

(a U b)*xaa(a U b)x



Designing Regular Expressions

e JetX2 ={a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.

(a U b)*xaa(a U b)x*

bbabbbaabab
aaaa
bbbbbabbbbaabbbbb



Designing Regular Expressions

e JetX2 ={a, b}.

* LletL ={ we€ 2*| wcontains aa as a
substring }.

(a U b)*xaa(a U b)x*

bbabbbaabab
aaaa
bbbbbabbbbaabbbbb



Designing Regular Expressions

e JetX2 ={a, b}.

* LletL ={ we€ 2*| wcontains aa as a
substring }.

2kaaXx

bbabbbaabab
aaaa
bbbbbabbbbaabbbbb



Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.



Designing Regular Expressions

jw| =4

The length of a
string w is
denoted |w|




Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.



Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

2222



Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

222



Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

222

aaaa
baba

bbbb
baaa



Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

222

O T T 9
o o8 o @



Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

z4

O T T 9
o o8 o @



Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

24

aaaa
baba

bbbb
baaa



Designing Regular Expressions

e let X = {a, b}.

 LetL ={ w € 2*| w contains at most one a }.

Here are some candidate regular expressions for
the language L. How many of these are correct?
(Discuss specifically which with your neighbors.)
2xaZx
bxabx U bx*

bx(a U g)bx

bxaxbx U bx*

bx(ax U g)bx




Designing Regular Expressions

e let X = {a, b}.

 LetL ={ w € 2*| w contains at most one a }.

bx(a U g)bx*



Designing Regular Expressions

e let X = {a, b}.

 LetL ={ w € 2*| w contains at most one a }.

bx bx



Designing Regular Expressions

e let X = {a, b}.

 LetL ={ w € 2*| w contains at most one a }.

b* b*

bbbbabbb
bbbbbb
abbb
a



Designing Regular Expressions

e et = {a, b}.

« Let L = { w € 2* | w contains at most one a }.

bx bx

bbbbabbb
bbbbbb
bbb



Designing Regular Expressions

e et = {a, b}.

« Let L = { w € 2* | w contains at most one a }.

bxa?bx

bbbbabbb
bbbbbb
bbb



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cslO03@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

csl03
first
dot



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax

csl03
first
dot



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax

csl03
first.middle.last
dot.at



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax( .aax)*

csl03
first.middle.last
dot.at



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax( .aax)*

csl103(@
first.middle.lastE
dot.at@



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.
aax( .aa*x)*@
cs103(@

first.middle.lastE
dot.at@



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.
aax( .aa*x)*@
cslO3@cs.stanford

first.middle.last@Gmail.site
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa*x( .aa*)*@aa*.aax*

cslO3@cs.stanford
first.middle.last@Gmail.site
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa*x( .aa*)*@aa*.aax*

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax( .aa*)*@aa*x.aa¥ .aax)*

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax .aax)*@aa*x.aaX .aa*x)*

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

a*(.aax)*@aax.aa%X .aax)x*

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

a* (.aax)*@aax.aa%X .aax)x*

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.
a* (.a*)*x@ a*.a* (.a")%*
cslO3@cs.stanford.edu

first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

csl03@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

csl03@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.
a* (.a*)*x@ a* (.a*)"
csl03@cs.stanford.edu

first.middle.last@mail.site.org
dot.at@dot.com



A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

a*'(.a*)*@a.a*)"

csl03@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com



For Comparison




Shorthand Summary

R" i1s shorthand for RR ... R (n times).
* Edge case: define R® = ¢.
2 is shorthand for “any character in 2.”

R? is shorthand for (R U €), meaning
“zero or one copies of R.”

R is shorthand for RR*, meaning “one or
more copies of R.”



The Lay of the Land



Languages you can
build a DFA for.

Regular
Languages

Languages you can
build an NFA for.
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Languages you can
build a DFA for.

Languages you can
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Regular
Languages

Languages You Can
Write a Regex For




The Power of Regular Expressions

Theorem: If R is a regular expression,
then AR) is regular.

Proof idea: Use induction!

 The atomic regular expressions all represent
regular languages.

 The combination steps represent closure
properties.

* So anything you can make from them must
be regular!



Thompson’s Algorithm

» In practice, many regex matchers use an
algorithm called Thompson's algorithm
to convert regular expressions into NFAs
(and, from there, to DFAS).

 Read Sipser if you're curious!

 Fun fact: the “Thompson” here is Ken
Thompson, one of the co-inventors of
Unix!



Languages you can
build a DFA for.

Regular
Languages

Languages you can
build an NFA for.



Languages you can
build a DFA for.

Regular
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anguages You Can
Write a Regex For

Languages you can
build an NFA for.




Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages You Can
Write a Regex For




The Power of Regular Expressions

Theorem: If L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.



Generalizing NFAs




Generalizing NFAs




Generalizing NFAs

These are all regular
expressions!




Generalizing NFAs

start q-O/ ab U b

a abx
@@
qz qs



Generalizing NFAs

start q-O/ ab U b

ab*

a
O axb?a
dz

(@)
qs

Note: Actual NFAs aren't
allowed to have transitions
like these. This is just a
thought experiment.




Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalalblalalb|b|b
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a abx
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qz qs

alalblalalb|b|b




Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalblalalb|b|b




Generalizing NFAs

start CZOJ ab U b

a abx
@@
q2 qs

alalalblalalb|b|b




Generalizing NFAs

start CZOJ ab U b

a abx
@@
q2 qs

alalalblalalb|b|b




Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalalblalalb|b|b

*




Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalalblalalb|b|b

*




Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalalblalalb|b|b




Key Idea 1: Imagine that we can label
transitions in an NFA with arbitrary regular
expressions.



Generalizing NFAs

start do ab U b




Key Idea 2: If we can convert an NFA into
a generalized NFA that looks like this...

---------------------

...then we can easily read off a regular
expression for the original NFA.



From NFAs to Regular Expressions

Rll R22
R12
start q, R21




From NFAs to Regular Expressions

Rll R22
R12
start
Here, Ri1, R12, R21, and R22 are
arbitrary regular expressions.




From NFAs to Regular Expressions

Rll R22
R12
start
Question: Can we get a clean reqgular
expression from this NFA?




From NFAs to Regular Expressions

Rll R22
R12
start q, R21

Key ldea 3: Somehow transform this
NFA so that it looks like this:

¢f E BN B BN BN BN BN BN BN BN BN BN BN BN BN M A,




From NFAs to Regular Expressions

Rll R22
R12
start q, R,
The first step Is going to be a
bit weird...




From NFAs to Regular Expressions

Rll R22
R12



From NFAs to Regular Expressions

R R

11 22

E R12 &
star
(@) "{e) = @




From NFAs to Regular Expressions

R R

11 22

e A R12 e
YORORNO




From NFAs to Regular Expressions

R R

11 22

e A R12 e
YORORNO




From NFAs to Regular Expressions

R R

11 22

e A R12 e
star @ q, R, \qy

Could we eliminate
this state from the
NFA?




From NFAs to Regular Expressions




From NFAs to Regular Expressions

Here is a pattern that we might process
when going from g, to q,: ER



From NFAs to Regular Expressions

Here is a pattern that we might process
when going from g, to q,: ER

State elimination quick
check:

How many of the following are
also patterns might we
process when going from g, to

q,?

€R..R
eR
eR
eR
€R..R

11" "12° 21" 11" "12

=
=
=
N

)
)

11" 11" "12

P
)

11" "12"° '11

P
o)

11" "12° 21

P
o)
P




From NFAs to Regular Expressions




From NFAs to Regular Expressions




From NFAs to Regular Expressions




From NFAs to Regular Expressions

Here is a pattern that we might process

when going from g, to q,: R,,R . R,



From NFAs to Regular Expressions

Here is a pattern that we might process

when going from g, to g,: R, R, R,



From NFAs to Regular Expressions




From NFAs to Regular Expressions




From NFAs to Regular Expressions

Rll* R12




From NFAs to Regular Expressions

Rll* R12

R22 U R21 R11>|< R12

Note: We're using union to

combine these transitions
together.




From NFAs to Regular Expressions

star qs ( ) '

R, UR, R,




From NFAs to Regular Expressions

star qs < ) '

R, UR, R,




From NFAs to Regular Expressions

star qs < ) '

R, UR, R,




From NFAs to Regular Expressions




From NFAs to Regular Expressions

Quick check: what goes
on this transition?




From NFAs to Regular Expressions

R, *R,(R,UR, R *R )*¢€

217711




From NFAs to Regular Expressions

R, *R,,(R,UR, R *R )*¢

217711




From NFAs to Regular Expressions

R, *R,(R,UR, R *R )*¢€

217711




From NFAs to Regular Expressions

R, *R,(R,UR, R *R )*¢€

217711




From NFAs to Regular Expressions

R, *R,(R,UR, R *R )*¢€

217711




From NFAs to Regular Expressions

'Fall>I< R12 (R22 U R R *RIZ)*

217 711




From NFAs to Regular Expressions

star q Rll* R12 (Rzz U 1:{211:{11*1:{12)>I<



From NFAs to Regular Expressions

star q Rll* R12 (Rzz U 1:{211:{11*1:{12)>I<

R R

11 22

R12
start q, R21




The State-Elimination Algorithm

« Start with an NFA N for the language L.

« Add a new start state g, and accept state g; to the
NFA.

« Add an e-transition from g, to the old start state of N.

« Add e-transitions from each accepting state of N to ¢,
then mark them as not accepting.

« Repeatedly remove states other than g, and g;

from the NFA by “shortcutting” them until only
two states remain: g, and g;.

« The transition from ¢, to ¢g; is then a regular
expression for the NFA.



The State-Elimination Algorithm

 To eliminate a state g from the automaton, do the following
for each pair of states gqo and g1, where there's a transition
from go into g and a transition from g into qa:

- Let R, Dbe the regex on the transition from qo to q.
- LetR_ Dbe the regex on the transition from q to q:.

- If there is a regular expression R,  on a transition from g

to itself, add a new transition from qo to g: labeled
((Rin) (Rstay)*(Rout)) ’

« If there isn't, add a new transition from qo to g: labeled
(R, )(R,,))

« If a pair of states has multiple transitions between them
labeled R1, Rz, ..., Rk, replace them with a single transition
labeled R1 U R2 U ... U R«.



Our Transtformations

direct conversion state elimination

DFA NFA Regexp

subset construction Thompson's algorithm



Theorem: The following are all equivalent:

- L. is a regular language.
- There is a DFA D such that ~(D) = L.

- There is an NFA N such that #(N) = L.
- There is a regular expression R such that £ (R) = L.



Why This Matters

 The equivalence of regular expressions
and finite automata has practical
relevance.

 Regular expression matchers have all the
power available to them of DFAs and NFAs.

» This also is hugely theoretically
significant: the regular languages can be
assembled “from scratch” using a small
number of operations!



Next Time

 Applications of Regular Languages
 Answering “so what?”

* Intuiting Reqgular Languages
« What makes a language regular?

 The Myhill-Nerode Theorem

* The limits of regular languages.
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