Regular Expressions

Recap from Last Time

Regular Languages

* A language L is a reqgular language itt
there is a DFA D such that AD) = L.

« Theorem: The following are equivalent:

« L is a regular language.
e There is a DFA for L.
e There is an NFA for L.

Language Concatenation

e [fw € X*¥ and x € X*, then wx is the
concatenation of w and x.

* If L1 and L2 are languages over 2, the
concatenation of L. and Lz is the language LiL>
defined as

Lilz ={wx|we€lLiand x € L2 }

« Example: if L1 = { a, ba, bb } and L> = { aa, bb },
then

L.l.> = { aaa, abb, baaa, babb, bbaa, bbbb }

[.ots and Lots of Concatenation

* Consider the language L = { aa, b }
* Lo = ¢}

 LL=121is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

 LLL = L3 is the set of strings formed by concatenating triples of
strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

« LLLL = L4 is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,
baabb, bbaaaa, bbaab, bbbaa, bbbb}

The Kleene Closure

 An important operation on languages is
the Kleene Closure, which is defined as

L*={we€e2X* | dn € N.w € Ln }

Closure Properties

« Theorem: If L. and L2 are regular
languages over an alphabet X, then so are

the following languages: Quick check 1:
. Z Let 2 = {1, 2, 3, a, b, c}.
1 Let L, = {aa, b}, L, = {33, 2}
e [1 U Lo be languages over 2.
e 1N Lo Name one string in L.
e T1- Name one string notin L.

o [1%¥

 These properties are called closure
properties of the regular languages.

Closure Properties

« Theorem: If L. and L2 are regular
languages over an alphabet X, then so are

the following languages: Quick check 2:
— Let 2 = {1, 2, 3, a, b, c}.
* Ly let L, = {aa, b}, L, = {33, 2}
e [1 U Lo be languages over 2.
e [N Lo Name one string in L1 U L.
e 711 Name one string notin L1 U L2,
11,2

o [1%¥

 These properties are called closure
properties of the regular languages.

Closure Properties

« Theorem: If L. and L2 are regular
languages over an alphabet X, then so are

the following languages: Quick check 3:
— Let 2 = {1, 2, 3, a, b, c}.
* Ly let L, = {aa, b}, L, = {33, 2}
e [1 U Lo be languages over 2.
e [N Lo Name one string in L1 n L.
e 711 Name one string notin L1 n L2.
11,2

o [1%¥

 These properties are called closure
properties of the regular languages.

Closure Properties

« Theorem: If L. and L2 are regular
languages over an alphabet X, then so are

the following languages: Quick check 4:
— Let 2 = {1, 2, 3, a, b, c}.
* La Let L, = {aa, b}, L, = {33, 2}
e [1 U Lo be languages over 2.
e [N Lo Name one string in Lilo2.
e 11 Name one string notin Lilo.
112

o [1%¥

 These properties are called closure
properties of the regular languages.

Closure Properties

« Theorem: If L. and L2 are regular
languages over an alphabet X, then so are

the following languages: Quick check 5:
— Let 2 = {1, 2, 3, a, b, c}.
* Ly let L, = {aa, b}, L, = {33, 2}
e [1 U Lo be languages over 2.
e [N Lo Name one string in L1*.
e T11.- Name one string notin L1*,

o [1%¥

 These properties are called closure
properties of the regular languages.

New Stuff!

Another View of Regular Languages

Rethinking Regular Languages

 We currently have several tools for
showing a language L is regular:

e Construct a DFA for L.
e Construct an NFA for L.

 Combine several simpler regular languages
together via closure properties to form L.

 Today we expand on this last idea.

Constructing Regular Languages

» Idea: Build up all regular languages as
tollows:

« Start with a small set of simple languages we
already know to be regular.

« Using closure properties, combine these
simple languages together to form more
elaborate languages.

* This is a bottom-up approach to the
regular languages.

Constructing Regular Languages

» Idea: Build up all regular languages as
follows:

* Start wj
already

 Using c
simple |
elabora

* This is a
regular |

Regular Expressions

* Regular expressions are a way of describing a language
via a string representation.

* They're used just about everywhere:

« They’re built into the JavaScript language and used for data
validation.

 They’'re used in the UNIX grep and flex tools to search files
and build compilers.

 They're employed to clean and scrape data for large-scale
analysis projects.

« Conceptually, regular expressions are strings describing
how to assemble a larger language out of smaller pieces.

Atomic Regular Expressions

* The regular expressions begin with three
simple building blocks.

* The symbol @ is a regular expression that
represents the empty language 4.

 For any a € %2, the symbol a is a regular
expression for the language {a}.

 The symbol € is a regular expression that
represents the language {¢}.

 Remember: {€} # O!
* Remember: {&€} # &!

Compound Regular Expressions

« If R, and R, are regular expressions, R;R, is a

regular expression for the concatenation of
the languages of R, and R,.

« If R, and R, are regular expressions, R; U R, is

a regular expression for the union of the
languages of R; and R,.

* If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

* If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Operator Precedence

 Here’s the operator precedence for
regular expressions:

(R)
R*
RlRZ
R, UR,

 So ab*xcUd is parsed as ((a(b*x))c)ud

Regular Expression Examples

* The regular expression trickUtreat represents the
language

{ trick, treat }.

* The regular expression booo* represents the
regular language

{ boo, booo, boooo, ... }.

* The regular expression candy! (candy!)x
represents the regular language

{ candy!, candy!candy!, candy!candy!candy!,

.. }.

Regular Expressions, Formally

 The language of a regular expression is the
language described by that regular expression.

 Formally:
« Z(g) = {¢}
c (D) =0
* Z(a) = {a}

« Z(RiR;) = Z(R;) Z(R,)

*» Z(R; UR,) =Z(R;) UZ(R,)
+ Z(R¥) = Z(R)*

* Z((R)) = Z(R)

Worthwhile activity: Apply this
recursive definition to

a(bUc) ((d))

and see what you get.

Regular Expressions, Formally

 The language of a regular expression is the
language described by that regular expression.

* Formally:
+ () = {g}
c () =0
* Z(a) = {a}

« Z(RiR;) = Z(R;) Z(R,)

*» Z(R; UR,) =Z(R;) UZ(R,)
+ Z(R¥) = Z(R)*

* Z((R)) = Z(R)

Regex quick check:
Let 2 = {a, b, ¢, d}.

Let L, = L(a(bUc) ((d))) be
a language over 2.

Name one string in L.

Name one string notin L.

Designing Regular Expressions

e JetX2 ={a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.

Designing Regular Expressions

e JetX2 ={a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.

(a U b)*aa(a U b)*

Designing Regular Expressions

e JetX2 ={a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.

(a U b)*xaa(a U b)x

Designing Regular Expressions

e JetX2 ={a, b}.

e letL ={wEe€2XZ*| wcontains aa as a
substring }.

(a U b)*xaa(a U b)x*

bbabbbaabab
aaaa
bbbbbabbbbaabbbbb

Designing Regular Expressions

e JetX2 ={a, b}.

* LletL ={ we€ 2*| wcontains aa as a
substring }.

(a U b)*xaa(a U b)x*

bbabbbaabab
aaaa
bbbbbabbbbaabbbbb

Designing Regular Expressions

e JetX2 ={a, b}.

* LletL ={ we€ 2*| wcontains aa as a
substring }.

2kaaXx

bbabbbaabab
aaaa
bbbbbabbbbaabbbbb

Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

Designing Regular Expressions

jw| =4

The length of a
string w is
denoted |w|

Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

2222

Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

222

Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

222

aaaa
baba

bbbb
baaa

Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

222

O T T 9
o o8 o @

Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

z4

O T T 9
o o8 o @

Designing Regular Expressions

e JetX2 ={a, b}.
eletL={we2*||wl=41}.

24

aaaa
baba

bbbb
baaa

Designing Regular Expressions

e let X = {a, b}.

 LetL ={ w € 2*| w contains at most one a }.

Here are some candidate regular expressions for
the language L. How many of these are correct?
(Discuss specifically which with your neighbors.)
2xaZx
bxabx U bx*

bx(a U g)bx

bxaxbx U bx*

bx(ax U g)bx

Designing Regular Expressions

e let X = {a, b}.

 LetL ={ w € 2*| w contains at most one a }.

bx(a U g)bx*

Designing Regular Expressions

e let X = {a, b}.

 LetL ={ w € 2*| w contains at most one a }.

bx bx

Designing Regular Expressions

e let X = {a, b}.

 LetL ={ w € 2*| w contains at most one a }.

b* b*

bbbbabbb
bbbbbb
abbb
a

Designing Regular Expressions

e et = {a, b}.

« Let L = { w € 2* | w contains at most one a }.

bx bx

bbbbabbb
bbbbbb
bbb

Designing Regular Expressions

e et = {a, b}.

« Let L = { w € 2* | w contains at most one a }.

bxa?bx

bbbbabbb
bbbbbb
bbb

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cslO03@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

csl03
first
dot

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax

csl03
first
dot

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax

csl03
first.middle.last
dot.at

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax(.aax)*

csl03
first.middle.last
dot.at

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax(.aax)*

csl103(@
first.middle.lastE
dot.at@

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.
aax(.aa*x)*@
cs103(@

first.middle.lastE
dot.at@

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.
aax(.aa*x)*@
cslO3@cs.stanford

first.middle.last@Gmail.site
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa*x(.aa*)*@aa*.aax*

cslO3@cs.stanford
first.middle.last@Gmail.site
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa*x(.aa*)*@aa*.aax*

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax(.aa*)*@aa*x.aa¥ .aax)*

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aax .aax)*@aa*x.aaX .aa*x)*

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

a*(.aax)*@aax.aa%X .aax)x*

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

a* (.aax)*@aax.aa%X .aax)x*

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.
a* (.a*)*x@ a*.a* (.a")%*
cslO3@cs.stanford.edu

first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cslO3@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

csl03@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

csl03@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.
a* (.a*)*x@ a* (.a*)"
csl03@cs.stanford.edu

first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e letX={a, ., @}, where a represents
“some letter.”

* Let's make a regex for email addresses.

a*'(.a*)*@a.a*)"

csl03@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

For Comparison

Shorthand Summary

R" i1s shorthand for RR ... R (n times).
* Edge case: define R® = ¢.
2 is shorthand for “any character in 2.”

R? is shorthand for (R U €), meaning
“zero or one copies of R.”

R is shorthand for RR*, meaning “one or
more copies of R.”

The Lay of the Land

Languages you can
build a DFA for.

Regular
Languages

Languages you can
build an NFA for.

Languages you can
build a DFA for.

Regular

Languages

anguages You Can
Write a Regex For

Languages you can
build an NFA for.

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languageg You Can
egex For

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages You Can
Write a Regex For

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages You Can
Write a Regex For

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages You Can
Write a Regex For

The Power of Regular Expressions

Theorem: If R is a regular expression,
then AR) is regular.

Proof idea: Use induction!

 The atomic regular expressions all represent
regular languages.

 The combination steps represent closure
properties.

* So anything you can make from them must
be regular!

Thompson’s Algorithm

» In practice, many regex matchers use an
algorithm called Thompson's algorithm
to convert regular expressions into NFAs
(and, from there, to DFAS).

 Read Sipser if you're curious!

 Fun fact: the “Thompson” here is Ken
Thompson, one of the co-inventors of
Unix!

Languages you can
build a DFA for.

Regular
Languages

Languages you can
build an NFA for.

Languages you can
build a DFA for.

Regular

Languages

anguages You Can
Write a Regex For

Languages you can
build an NFA for.

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular
Languages

Languages You Can
Write a Regex For

The Power of Regular Expressions

Theorem: If L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

Generalizing NFAs

Generalizing NFAs

Generalizing NFAs

These are all regular
expressions!

Generalizing NFAs

start q-O/ ab U b

a abx
@@
qz qs

Generalizing NFAs

start q-O/ ab U b

ab*

a
O axb?a
dz

(@)
qs

Note: Actual NFAs aren't
allowed to have transitions
like these. This is just a
thought experiment.

Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalalblalalb|b|b

Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalblalalb|b|b

Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalblalalb|b|b

Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalblalalb|b|b

Generalizing NFAs

start CZOJ ab U b

a abx
@@
q2 qs

alalalblalalb|b|b

Generalizing NFAs

start CZOJ ab U b

a abx
@@
q2 qs

alalalblalalb|b|b

Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalalblalalb|b|b

*

Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalalblalalb|b|b

*

Generalizing NFAs

start CZOJ ab U b

a abx
@@
qz qs

alalalblalalb|b|b

Key Idea 1: Imagine that we can label
transitions in an NFA with arbitrary regular
expressions.

Generalizing NFAs

start do ab U b

Key Idea 2: If we can convert an NFA into
a generalized NFA that looks like this...

...then we can easily read off a regular
expression for the original NFA.

From NFAs to Regular Expressions

Rll R22
R12
start q, R21

From NFAs to Regular Expressions

Rll R22
R12
start
Here, Ri1, R12, R21, and R22 are
arbitrary regular expressions.

From NFAs to Regular Expressions

Rll R22
R12
start
Question: Can we get a clean reqgular
expression from this NFA?

From NFAs to Regular Expressions

Rll R22
R12
start q, R21

Key ldea 3: Somehow transform this
NFA so that it looks like this:

¢f E BN B BN BN BN BN BN BN BN BN BN BN BN BN M A,

From NFAs to Regular Expressions

Rll R22
R12
start q, R,
The first step Is going to be a
bit weird...

From NFAs to Regular Expressions

Rll R22
R12

From NFAs to Regular Expressions

R R

11 22

E R12 &
star
(@) "{e) = @

From NFAs to Regular Expressions

R R

11 22

e A R12 e
YORORNO

From NFAs to Regular Expressions

R R

11 22

e A R12 e
YORORNO

From NFAs to Regular Expressions

R R

11 22

e A R12 e
star @ q, R, \qy

Could we eliminate
this state from the
NFA?

From NFAs to Regular Expressions

From NFAs to Regular Expressions

Here is a pattern that we might process
when going from g, to q,: ER

From NFAs to Regular Expressions

Here is a pattern that we might process
when going from g, to q,: ER

State elimination quick
check:

How many of the following are
also patterns might we
process when going from g, to

q,?

€R..R
eR
eR
eR
€R..R

11" "12° 21" 11" "12

=
=
=
N

)
)

11" 11" "12

P
)

11" "12"° '11

P
o)

11" "12° 21

P
o)
P

From NFAs to Regular Expressions

From NFAs to Regular Expressions

From NFAs to Regular Expressions

From NFAs to Regular Expressions

Here is a pattern that we might process

when going from g, to q,: R,,R . R,

From NFAs to Regular Expressions

Here is a pattern that we might process

when going from g, to g,: R, R, R,

From NFAs to Regular Expressions

From NFAs to Regular Expressions

From NFAs to Regular Expressions

Rll* R12

From NFAs to Regular Expressions

Rll* R12

R22 U R21 R11>|< R12

Note: We're using union to

combine these transitions
together.

From NFAs to Regular Expressions

star qs () '

R, UR, R,

From NFAs to Regular Expressions

star qs <) '

R, UR, R,

From NFAs to Regular Expressions

star qs <) '

R, UR, R,

From NFAs to Regular Expressions

From NFAs to Regular Expressions

Quick check: what goes
on this transition?

From NFAs to Regular Expressions

R, *R,(R,UR, R *R)*¢€

217711

From NFAs to Regular Expressions

R, *R,,(R,UR, R *R)*¢

217711

From NFAs to Regular Expressions

R, *R,(R,UR, R *R)*¢€

217711

From NFAs to Regular Expressions

R, *R,(R,UR, R *R)*¢€

217711

From NFAs to Regular Expressions

R, *R,(R,UR, R *R)*¢€

217711

From NFAs to Regular Expressions

'Fall>I< R12 (R22 U R R *RIZ)*

217 711

From NFAs to Regular Expressions

star q Rll* R12 (Rzz U 1:{211:{11*1:{12)>I<

From NFAs to Regular Expressions

star q Rll* R12 (Rzz U 1:{211:{11*1:{12)>I<

R R

11 22

R12
start q, R21

The State-Elimination Algorithm

« Start with an NFA N for the language L.

« Add a new start state g, and accept state g; to the
NFA.

« Add an e-transition from g, to the old start state of N.

« Add e-transitions from each accepting state of N to ¢,
then mark them as not accepting.

« Repeatedly remove states other than g, and g;

from the NFA by “shortcutting” them until only
two states remain: g, and g;.

« The transition from ¢, to ¢g; is then a regular
expression for the NFA.

The State-Elimination Algorithm

 To eliminate a state g from the automaton, do the following
for each pair of states gqo and g1, where there's a transition
from go into g and a transition from g into qa:

- Let R, Dbe the regex on the transition from qo to q.
- LetR_ Dbe the regex on the transition from q to q:.

- If there is a regular expression R, on a transition from g

to itself, add a new transition from qo to g: labeled
((Rin) (Rstay)*(Rout)) ’

« If there isn't, add a new transition from qo to g: labeled
(R,)(R,,))

« If a pair of states has multiple transitions between them
labeled R1, Rz, ..., Rk, replace them with a single transition
labeled R1 U R2 U ... U R«.

Our Transtformations

direct conversion state elimination

DFA NFA Regexp

subset construction Thompson's algorithm

Theorem: The following are all equivalent:

- L. is a regular language.
- There is a DFA D such that ~(D) = L.

- There is an NFA N such that #(N) = L.
- There is a regular expression R such that £ (R) = L.

Why This Matters

 The equivalence of regular expressions
and finite automata has practical
relevance.

 Regular expression matchers have all the
power available to them of DFAs and NFAs.

» This also is hugely theoretically
significant: the regular languages can be
assembled “from scratch” using a small
number of operations!

Next Time

 Applications of Regular Languages
 Answering “so what?”

* Intuiting Reqgular Languages
« What makes a language regular?

 The Myhill-Nerode Theorem

* The limits of regular languages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

