

Regular Expressions

Recap from Last Time

Regular Languages

- A language L is a ***regular language*** iff there is a DFA D such that $\mathcal{L}(D) = L$.
- ***Theorem:*** The following are equivalent:
 - L is a regular language.
 - There is a **DFA** for L .
 - There is an **NFA** for L .

Language Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, then wx is the **concatenation** of w and x .
- If L_1 and L_2 are languages over Σ , the **concatenation** of L_1 and L_2 is the language L_1L_2 defined as

$$L_1L_2 = \{ wx \mid w \in L_1 \text{ and } x \in L_2 \}$$

- Example: if $L_1 = \{ \mathbf{a}, \mathbf{ba}, \mathbf{bb} \}$ and $L_2 = \{ \mathbf{aa}, \mathbf{bb} \}$, then

$$L_1L_2 = \{ \mathbf{aaa}, \mathbf{abb}, \mathbf{baaa}, \mathbf{babbb}, \mathbf{bbaa}, \mathbf{bbbb} \}$$

Lots and Lots of Concatenation

- Consider the language $L = \{ \text{aa, b} \}$
- $L^0 = \{\varepsilon\}$
- $LL = L^2$ is the set of strings formed by concatenating pairs of strings in L .

$\{ \text{aaaa, aab, baa, bb} \}$

- $LLL = L^3$ is the set of strings formed by concatenating triples of strings in L .

$\{ \text{aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb} \}$

- $LLLL = L^4$ is the set of strings formed by concatenating quadruples of strings in L .

$\{ \text{aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa, aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa, baabb, bbaaaa, bbaab, bbbaa, bbbb} \}$

The Kleene Closure

- An important operation on languages is the **Kleene Closure**, which is defined as

$$L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \}$$

Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:

- \bar{L}_1
- $L_1 \cup L_2$
- $L_1 \cap L_2$
- L_1L_2
- L_1^*

- These properties are called ***closure properties of the regular languages.***

Quick check 1:

Let $\Sigma = \{1, 2, 3, a, b, c\}$.
Let $L_1 = \{aa, b\}$, $L_2 = \{33, 2\}$
be languages over Σ .

Name one string **in** \bar{L}_1 .

Name one string **not in** \bar{L}_1 .

Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:

- \bar{L}_1
- $L_1 \cup L_2$
- $L_1 \cap L_2$
- $L_1 L_2$
- L_1^*

- These properties are called ***closure properties of the regular languages.***

Quick check 2:

Let $\Sigma = \{1, 2, 3, a, b, c\}$.
Let $L_1 = \{aa, b\}$, $L_2 = \{33, 2\}$
be languages over Σ .

Name one string **in** $L_1 \cup L_2$.

Name one string **not in** $L_1 \cup L_2$.

Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:

- \bar{L}_1
- $L_1 \cup L_2$
- $L_1 \cap L_2$
- $L_1 L_2$
- L_1^*

- These properties are called ***closure properties of the regular languages.***

Quick check 3:

Let $\Sigma = \{1, 2, 3, a, b, c\}$.
Let $L_1 = \{aa, b\}$, $L_2 = \{33, 2\}$
be languages over Σ .

Name one string **in** $L_1 \cap L_2$.

Name one string **not in** $L_1 \cap L_2$.

Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:

- \bar{L}_1
- $L_1 \cup L_2$
- $L_1 \cap L_2$
- L_1L_2
- L_1^*

- These properties are called ***closure properties of the regular languages.***

Quick check 4:

Let $\Sigma = \{1, 2, 3, a, b, c\}$.
Let $L_1 = \{aa, b\}$, $L_2 = \{33, 2\}$
be languages over Σ .

Name one string **in** L_1L_2 .

Name one string **not in** L_1L_2 .

Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:

- \bar{L}_1
- $L_1 \cup L_2$
- $L_1 \cap L_2$
- $L_1 L_2$
- L_1^*

- These properties are called ***closure properties of the regular languages.***

Quick check 5:

Let $\Sigma = \{1, 2, 3, a, b, c\}$.
Let $L_1 = \{aa, b\}$, $L_2 = \{33, 2\}$
be languages over Σ .

Name one string **in** L_1^* .

Name one string **not in** L_1^* .

New Stuff!

Another View of Regular Languages

Rethinking Regular Languages

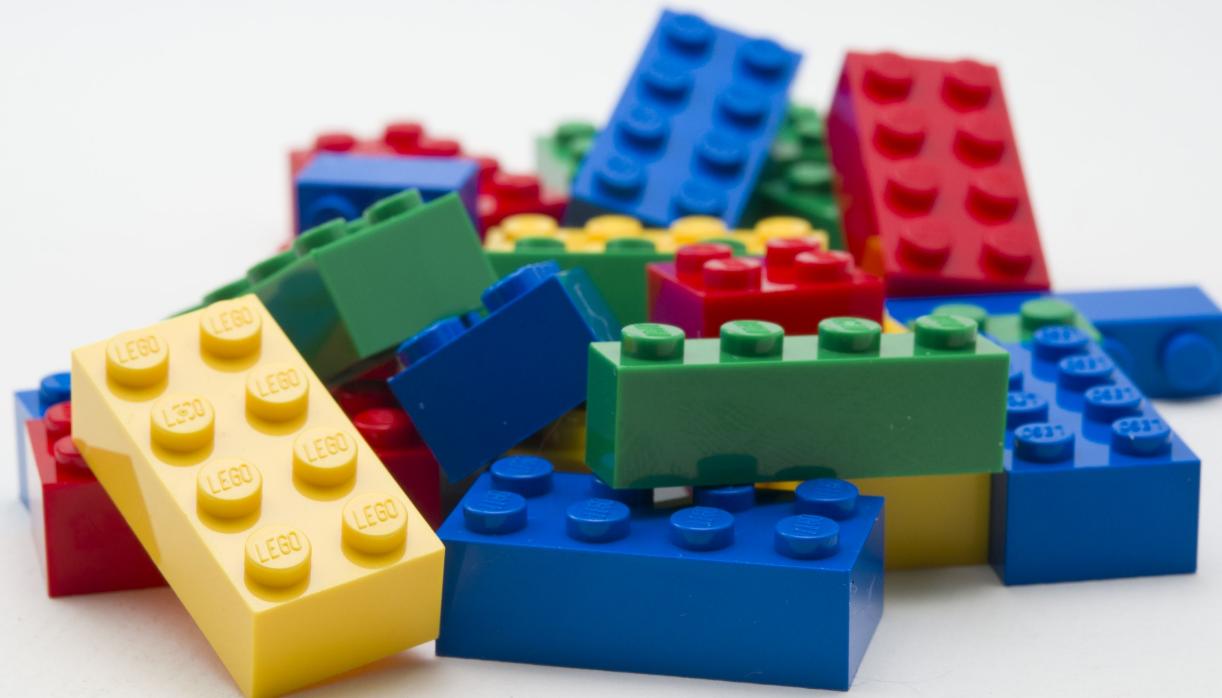
- We currently have several tools for showing a language L is regular:
 - Construct a **DFA** for L .
 - Construct an **NFA** for L .
 - Combine several simpler regular languages together via **closure properties** to form L .
- Today we expand on this last idea.

Constructing Regular Languages

- ***Idea:*** Build up all regular languages as follows:
 - Start with a small set of simple languages we already know to be regular.
 - Using closure properties, combine these simple languages together to form more elaborate languages.
- *This is a bottom-up approach to the regular languages.*

Constructing Regular Languages

- **Idea:** Build up all regular languages as follows:
 - Start with a small set of simple languages we already have
 - Using composition, union, and concatenation, build simple languages from these, and then elaborate them
 - *This is a metaphor for constructing regular languages.*



Regular Expressions

- **Regular expressions** are a way of describing a language via a string representation.
- They're used just about everywhere:
 - They're built into the JavaScript language and used for data validation.
 - They're used in the UNIX grep and flex tools to search files and build compilers.
 - They're employed to clean and scrape data for large-scale analysis projects.
- Conceptually, regular expressions are strings describing how to assemble a larger language out of smaller pieces.

Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol \emptyset is a regular expression that represents the empty language \emptyset .
- For any $a \in \Sigma$, the symbol a is a regular expression for the language $\{a\}$.
- The symbol ϵ is a regular expression that represents the language $\{\epsilon\}$.
 - ***Remember:*** $\{\epsilon\} \neq \emptyset$!
 - ***Remember:*** $\{\epsilon\} \neq \epsilon$!

Compound Regular Expressions

- If R_1 and R_2 are regular expressions, $\mathbf{R}_1\mathbf{R}_2$ is a regular expression for the ***concatenation*** of the languages of R_1 and R_2 .
- If R_1 and R_2 are regular expressions, $\mathbf{R}_1 \cup \mathbf{R}_2$ is a regular expression for the ***union*** of the languages of R_1 and R_2 .
- If R is a regular expression, \mathbf{R}^* is a regular expression for the ***Kleene closure*** of the language of R .
- If R is a regular expression, (\mathbf{R}) is a regular expression with the same meaning as R .

Operator Precedence

- Here's the operator precedence for regular expressions:

(R)

R^*

$R_1 R_2$

$R_1 \cup R_2$

- So **ab*cUd** is parsed as **$((a(b^*))c)Ud$**

Regular Expression Examples

- The regular expression **trick****U****treat** represents the language

{ **trick**, **treat** }.

- The regular expression **booo******* represents the regular language

{ **boo**, **booo**, **boooo**, ... }.

- The regular expression **candy!** **(candy!)******* represents the regular language

{ **candy!**, **candy! candy!**, **candy! candy! candy!**,
... }.

Regular Expressions, Formally

- The ***language of a regular expression*** is the language described by that regular expression.
- Formally:
 - $\mathcal{L}(\epsilon) = \{\epsilon\}$
 - $\mathcal{L}(\emptyset) = \emptyset$
 - $\mathcal{L}(a) = \{a\}$
 - $\mathcal{L}(R_1 R_2) = \mathcal{L}(R_1) \mathcal{L}(R_2)$
 - $\mathcal{L}(R_1 \cup R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2)$
 - $\mathcal{L}(R^*) = \mathcal{L}(R)^*$
 - $\mathcal{L}((R)) = \mathcal{L}(R)$

Worthwhile activity: Apply this recursive definition to

$a(b \cup c)((d))$

and see what you get.

Regular Expressions, Formally

- The ***language of a regular expression*** is the language described by that regular expression.
- Formally:
 - $\mathcal{L}(\epsilon) = \{\epsilon\}$
 - $\mathcal{L}(\emptyset) = \emptyset$
 - $\mathcal{L}(a) = \{a\}$
 - $\mathcal{L}(R_1 R_2) = \mathcal{L}(R_1) \mathcal{L}(R_2)$
 - $\mathcal{L}(R_1 \cup R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2)$
 - $\mathcal{L}(R^*) = \mathcal{L}(R)^*$
 - $\mathcal{L}((R)) = \mathcal{L}(R)$

Regex quick check:

Let $\Sigma = \{a, b, c, d\}$.

Let $L_1 = \mathcal{L}(a(b \cup c)((d)))$ be a language over Σ .

Name one string **in** L_1 .

Name one string **not in** L_1 .

Designing Regular Expressions

- Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring} \}$.

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring} \}$.

$$(\mathbf{a} \cup \mathbf{b})^* \mathbf{aa} (\mathbf{a} \cup \mathbf{b})^*$$

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring} \}$.

$$(\mathbf{a} \cup \mathbf{b})^* \mathbf{aa} (\mathbf{a} \cup \mathbf{b})^*$$

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring} \}$.

$$(\mathbf{a} \cup \mathbf{b})^* \mathbf{aa} (\mathbf{a} \cup \mathbf{b})^*$$

bbabbbaabab

aaaa

bbbbbabbbbaabbbb

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring} \}$.

$$(\mathbf{a} \cup \mathbf{b})^* \mathbf{aa} (\mathbf{a} \cup \mathbf{b})^*$$

bbabbbaabab

aaaa

bbbbbabbbbaabbbb

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring} \}$.

$\Sigma^* \mathbf{aa} \Sigma^*$

bbabbbaabab

aaaa

bbbbbabbbbaabbbb

Designing Regular Expressions

- Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

Designing Regular Expressions

Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}$.

Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

The length of a
string w is
denoted $|w|$

Designing Regular Expressions

- Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

Designing Regular Expressions

- Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

$\Sigma\Sigma\Sigma\Sigma$

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

ΣΣΣΣ

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

ΣΣΣΣ

aaaa
baba
bbbb
baaa

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

$\Sigma \Sigma \Sigma \Sigma$

aaaa
baba
bbbb
baaa

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

Σ^4

aaaa
baba
bbbb
baaa

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

Σ^4

aaaa
baba
bbbb
baaa

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } \mathbf{a} \}$.

Here are some candidate regular expressions for the language L . **How many** of these are correct? (Discuss specifically which with your neighbors.)

$\Sigma^* \mathbf{a} \Sigma^*$

$\mathbf{b}^* \mathbf{a} \mathbf{b}^* \cup \mathbf{b}^*$

$\mathbf{b}^* (\mathbf{a} \cup \varepsilon) \mathbf{b}^*$

$\mathbf{b}^* \mathbf{a}^* \mathbf{b}^* \cup \mathbf{b}^*$

$\mathbf{b}^* (\mathbf{a}^* \cup \varepsilon) \mathbf{b}^*$

Designing Regular Expressions

- Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } \mathbf{a} \}$.

b*(**a** \cup ϵ)**b***

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } \mathbf{a} \}$.

b*(**a** \cup ϵ)**b***

Designing Regular Expressions

- Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } \mathbf{a} \}$.

b*(**a** \cup ϵ)**b***

bbbabb

bbbbbb

abbb

a

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } \mathbf{a} \}$.

b*(**a** \cup ϵ)**b***

bbbabb

bbbbbb

abbb

a

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } \mathbf{a} \}$.

b* $\mathbf{a}?$ **b***

bbbabb

bbbbbb

abbb

a

A More Elaborate Design

- Let $\Sigma = \{ \text{a}, \text{.}, \text{@} \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

aa*

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

aa*

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

aa* (.aa*)*

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

aa* (.aa*)*

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

aa*(**.aa***) ***@**

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

aa*(**.aa***) ***@**

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

aa* (.aa*)*@aa*.aa*

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

aa* (.aa*)*@aa*.aa*

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

aa* (.aa*)*@aa*.aa*(.aa*)*

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

```
aa*(.aa*)*@aa*.aa*(.aa*)*
```

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

a⁺ (.aa^{*})^{*}@aa^{*}.aa^{*}(.aa^{*})^{*}

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

a⁺ (.aa^{*})^{*}@aa^{*}.aa^{*}(.aa^{*})^{*}

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

a⁺ (.a⁺)^{*} @ a⁺ .a⁺ (.a⁺)^{*}

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

$$\mathbf{a^+} \ (\mathbf{.a^+})^* \ \mathbf{@} \ \mathbf{a^+} \boxed{\mathbf{.a^+} \ (\mathbf{.a^+})^*}$$

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

$$\mathbf{a^+} \ (\mathbf{.a^+})^* \ \mathbf{@} \ \mathbf{a^+} \boxed{\mathbf{.a^+} \ (\mathbf{.a^+})^*}$$

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

$$\mathbf{a^+} \ (\mathbf{.a^+})^* \ \mathbf{@} \ \mathbf{a^+} \boxed{\mathbf{.a^+} \ (\mathbf{.a^+})^*}$$

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

$$a^+ (.a^+)* @ a^+ \boxed{(.a^+)^+}$$

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

a⁺ (.a⁺)^{*} @ a⁺ (.a⁺)⁺

cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

a⁺(.a⁺)^{*}@a⁺(.a⁺)⁺

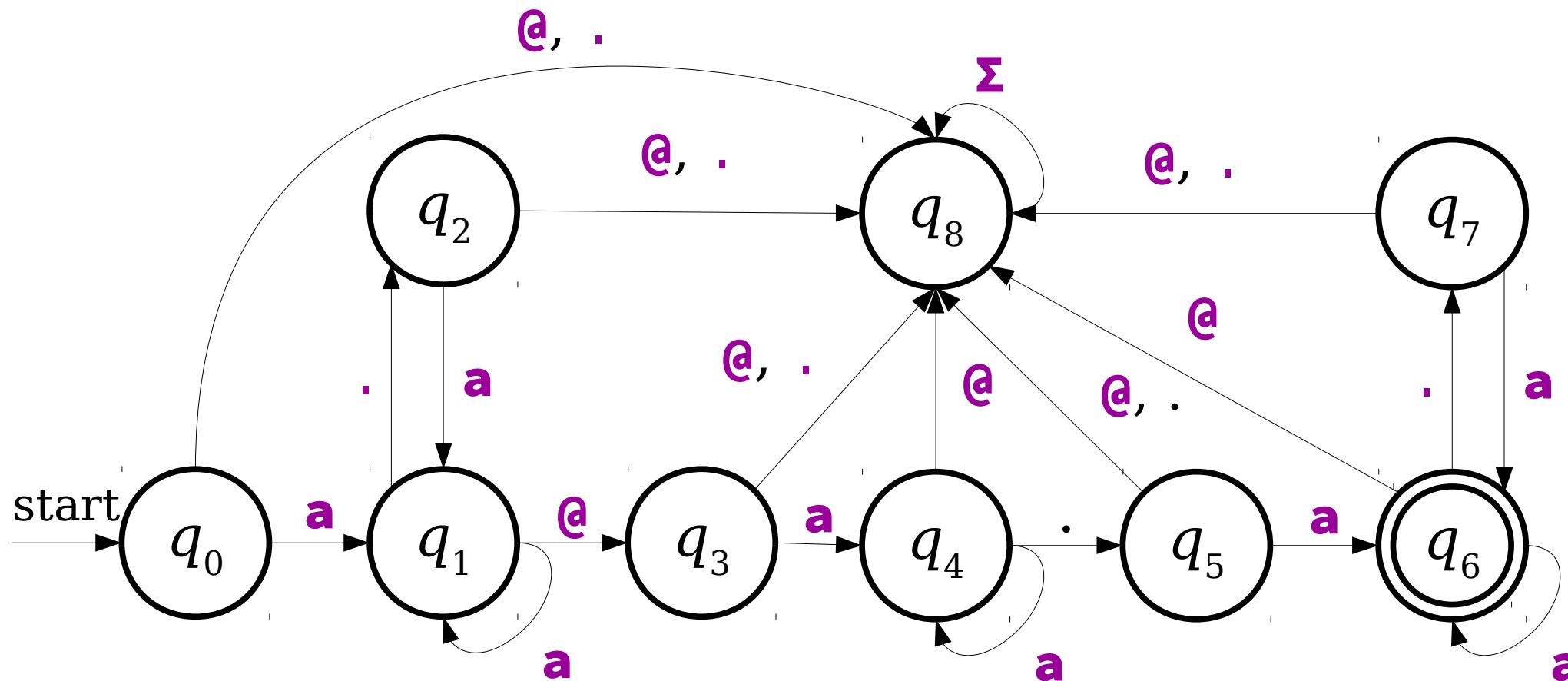
cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

For Comparison

$$a^+ (\cdot a^+)^* @ a a^+ (\cdot a^+)^+$$



Shorthand Summary

- \mathbf{R}^n is shorthand for $\mathbf{R}\mathbf{R}\dots\mathbf{R}$ (n times).
 - Edge case: define $\mathbf{R}^0 = \varepsilon$.
- Σ is shorthand for “any character in Σ .”
- $\mathbf{R}?$ is shorthand for $(\mathbf{R} \cup \varepsilon)$, meaning “zero or one copies of R .”
- \mathbf{R}^+ is shorthand for $\mathbf{R}\mathbf{R}^*$, meaning “one or more copies of R .”

The Lay of the Land

Languages you can
build a DFA for.

Languages you can
build an NFA for.

*Regular
Languages*

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular Languages

Languages You Can
Write a Regex For

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular Languages

Languages You Can
Write a Regex For

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular Languages

Languages You Can
Write a Regex For

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular Languages

Languages You Can
Write a Regex For

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular Languages

Languages You Can
Write a Regex For

The Power of Regular Expressions

Theorem: If R is a regular expression, then $\mathcal{L}(R)$ is regular.

Proof idea: Use induction!

- The atomic regular expressions all represent regular languages.
- The combination steps represent closure properties.
- So anything you can make from them must be regular!

Thompson's Algorithm

- In practice, many regex matchers use an algorithm called ***Thompson's algorithm*** to convert regular expressions into NFAs (and, from there, to DFAs).
 - Read Sipser if you're curious!
- ***Fun fact:*** the “Thompson” here is Ken Thompson, one of the co-inventors of Unix!

Languages you can
build a DFA for.

Languages you can
build an NFA for.

*Regular
Languages*

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular Languages

Languages You Can
Write a Regex For

Languages you can
build a DFA for.

Languages you can
build an NFA for.

Regular Languages

Languages You Can
Write a Regex For

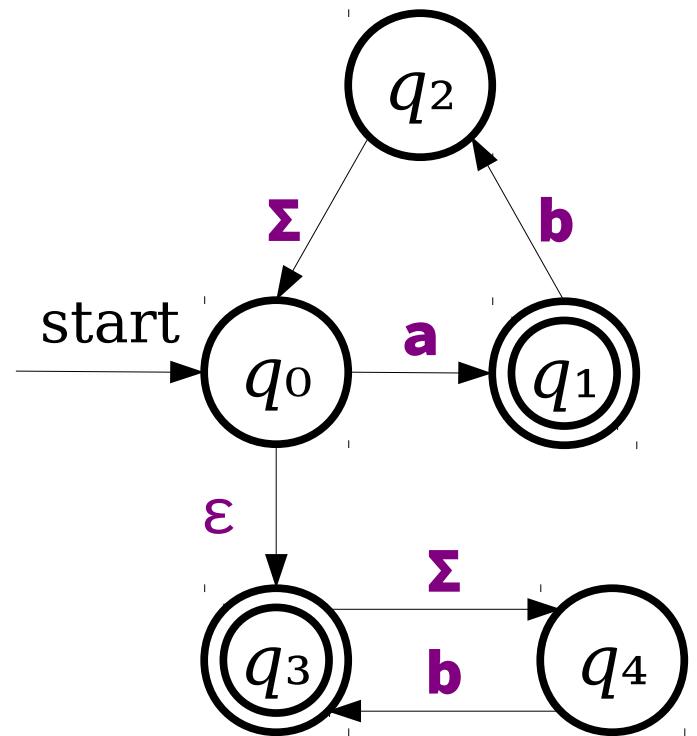
The Power of Regular Expressions

Theorem: If L is a regular language, then there is a regular expression for L .

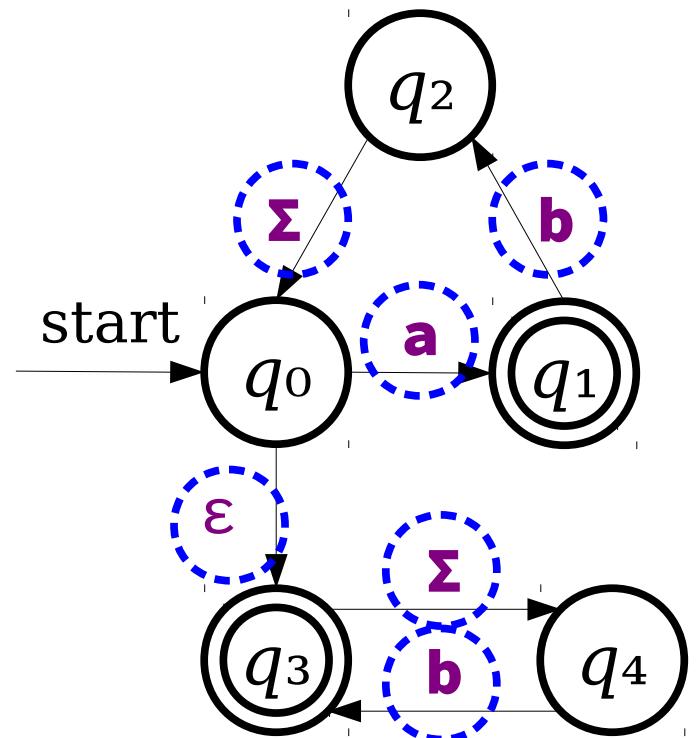
This is not obvious!

Proof idea: Show how to convert an arbitrary NFA into a regular expression.

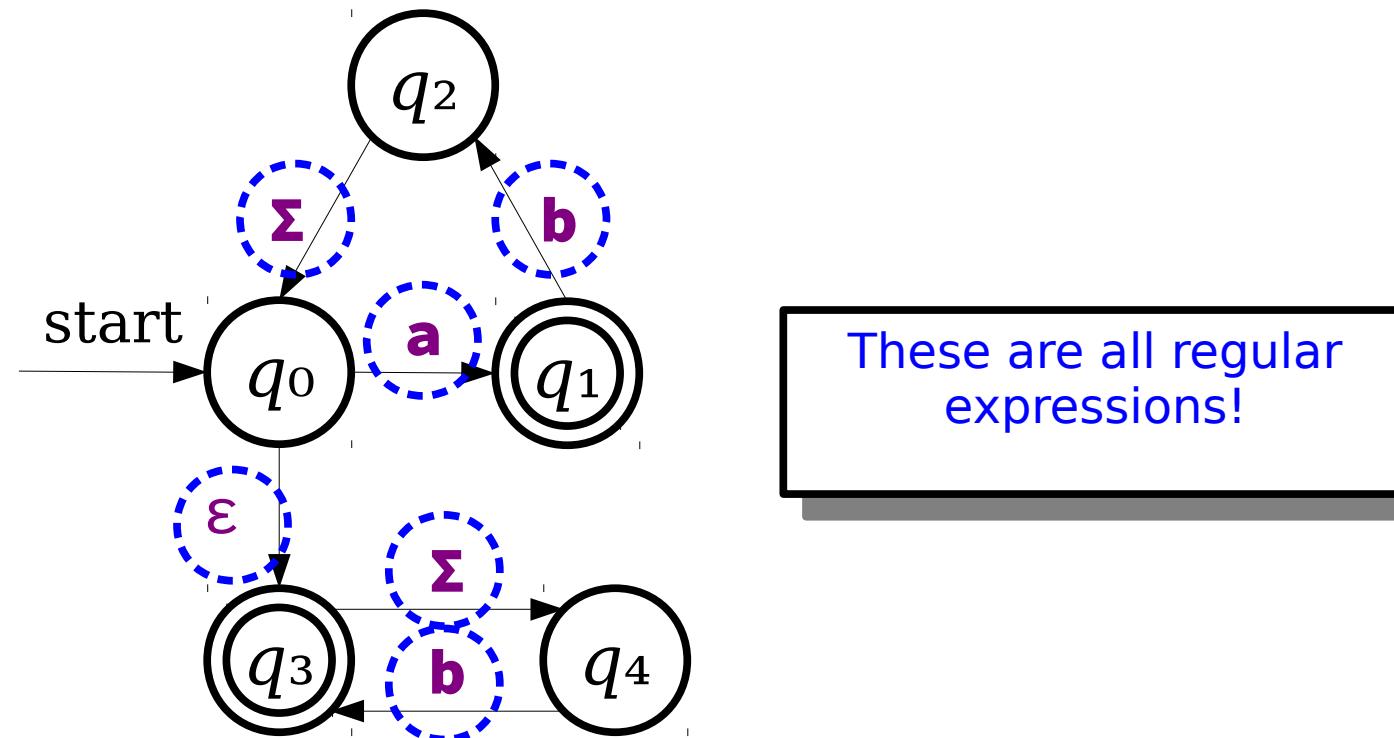
Generalizing NFAs



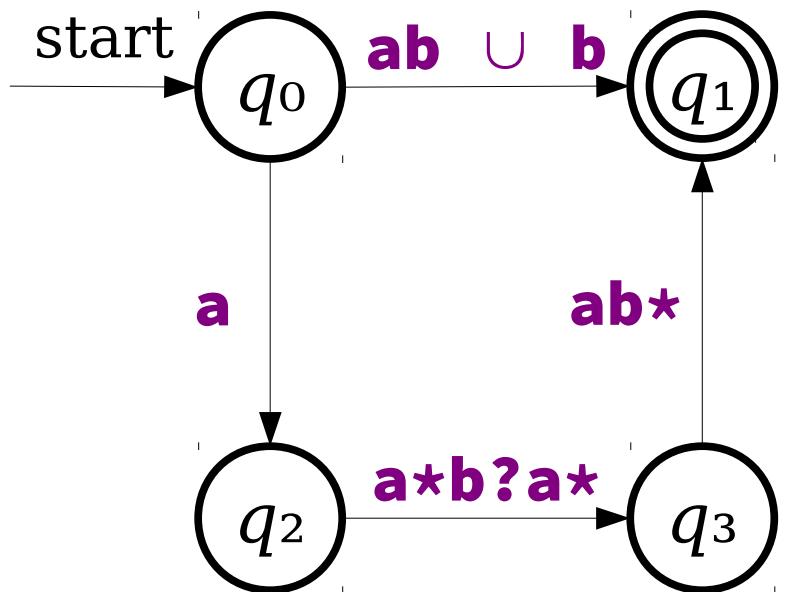
Generalizing NFAs



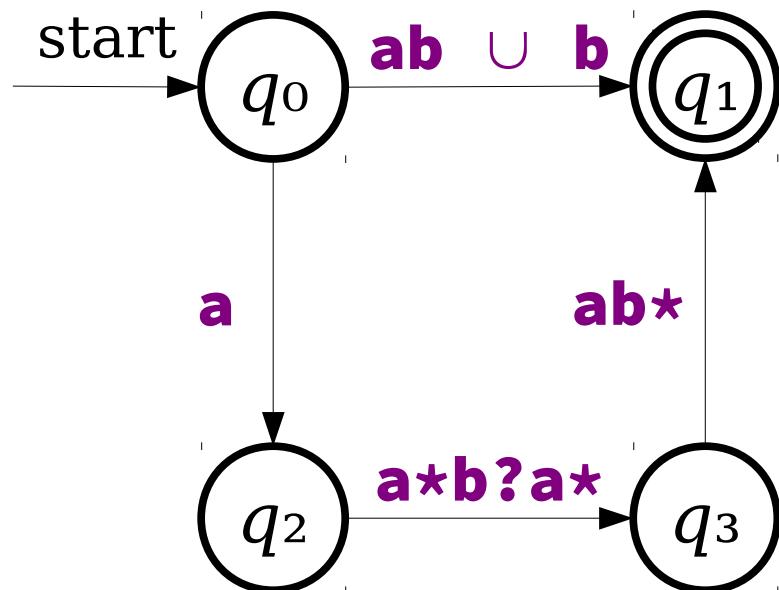
Generalizing NFAs



Generalizing NFAs

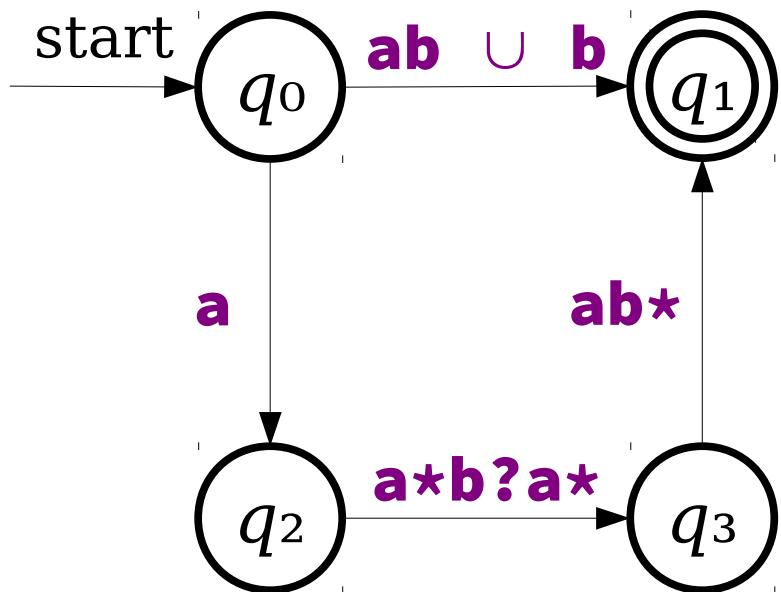


Generalizing NFAs



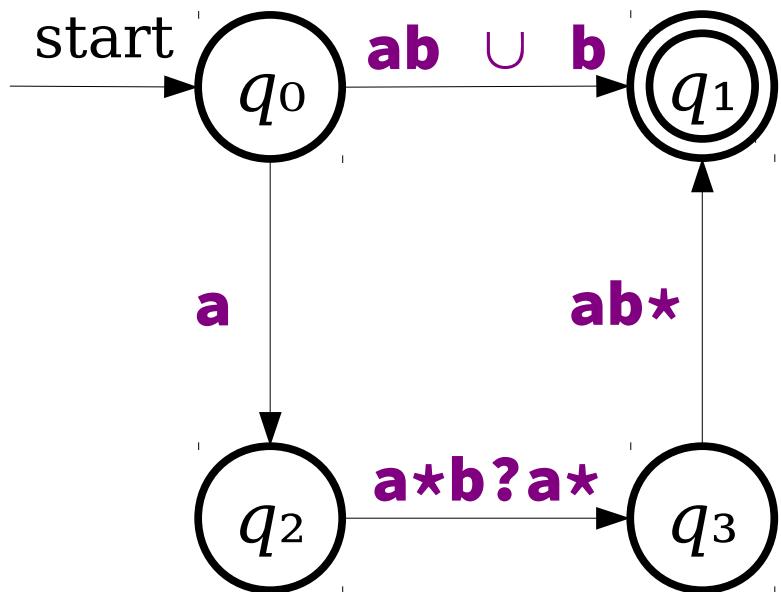
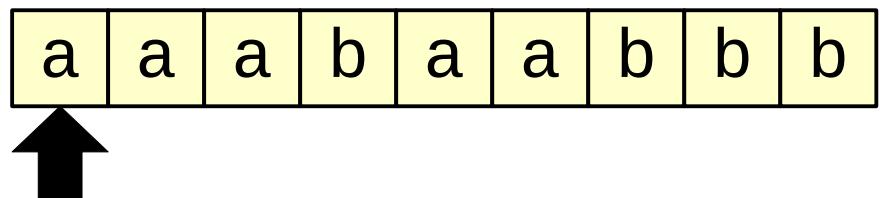
Note: Actual NFAs aren't allowed to have transitions like these. This is just a thought experiment.

Generalizing NFAs

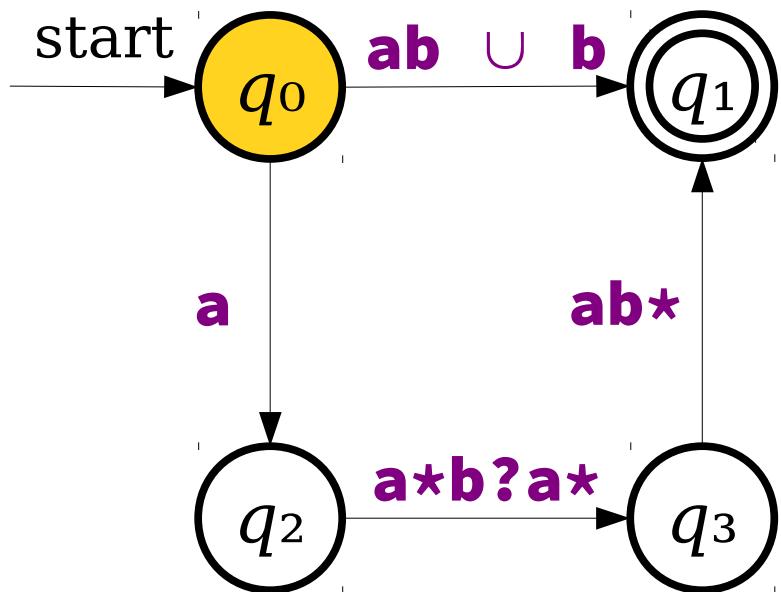
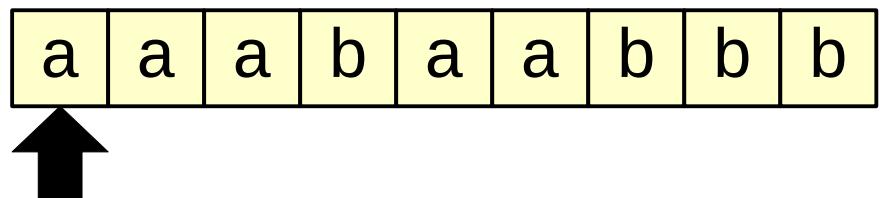


a	a	a	b	a	a	b	b	b
---	---	---	---	---	---	---	---	---

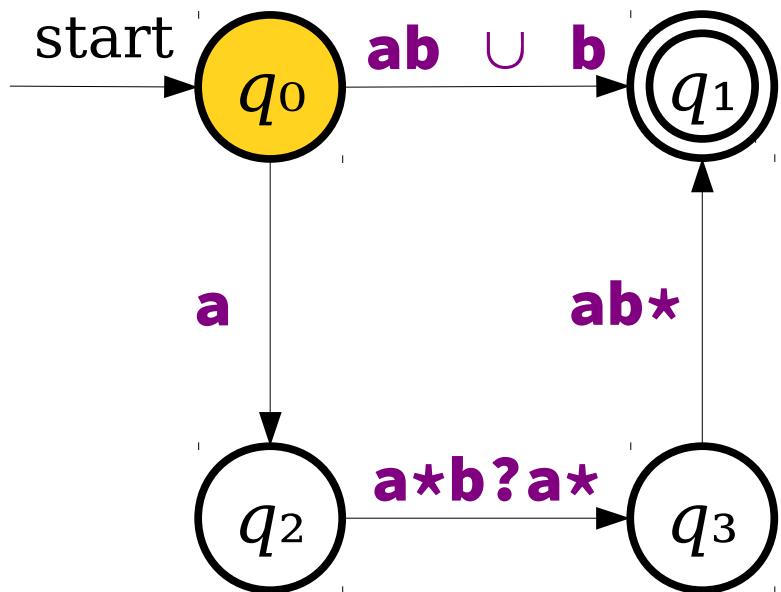
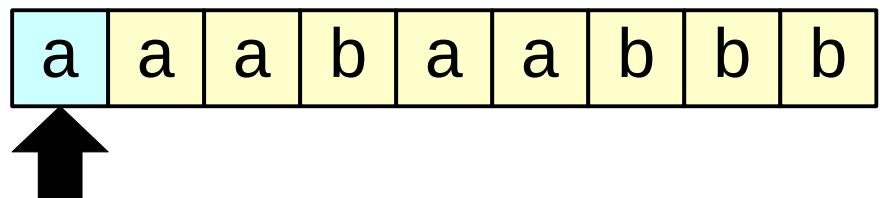
Generalizing NFAs



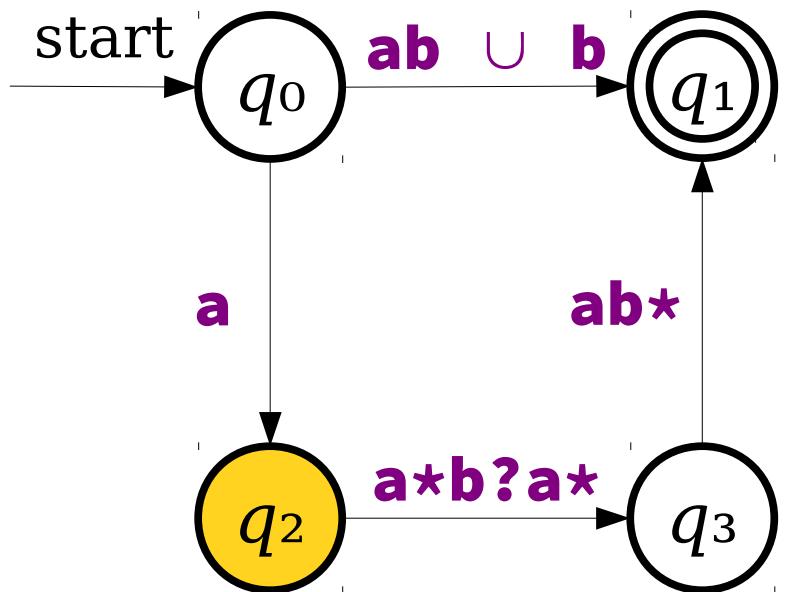
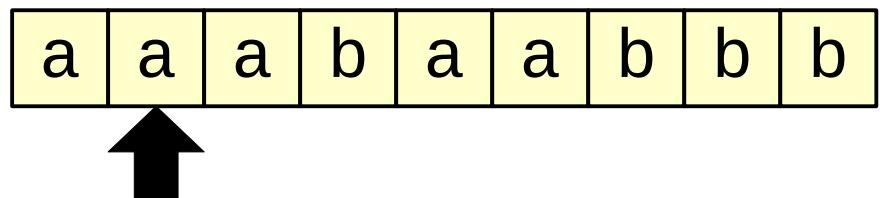
Generalizing NFAs



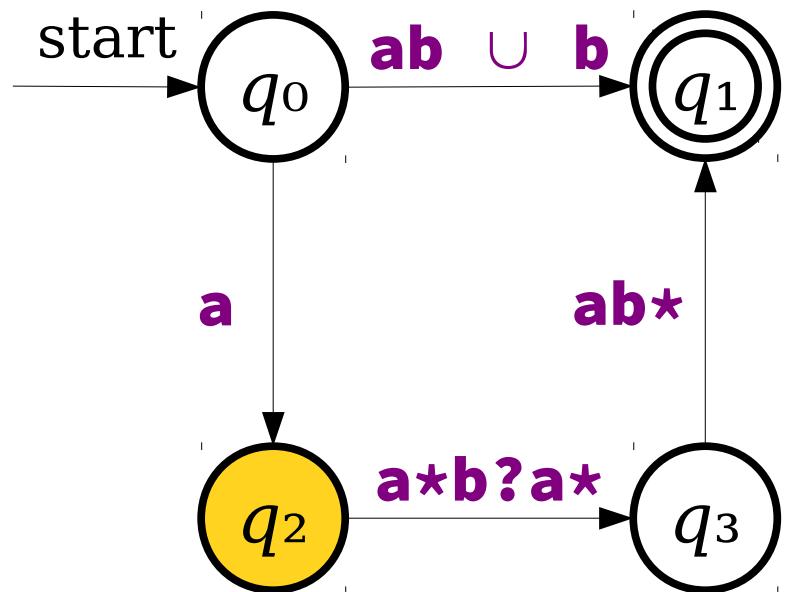
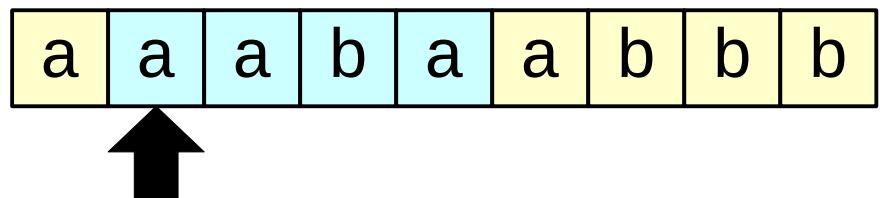
Generalizing NFAs



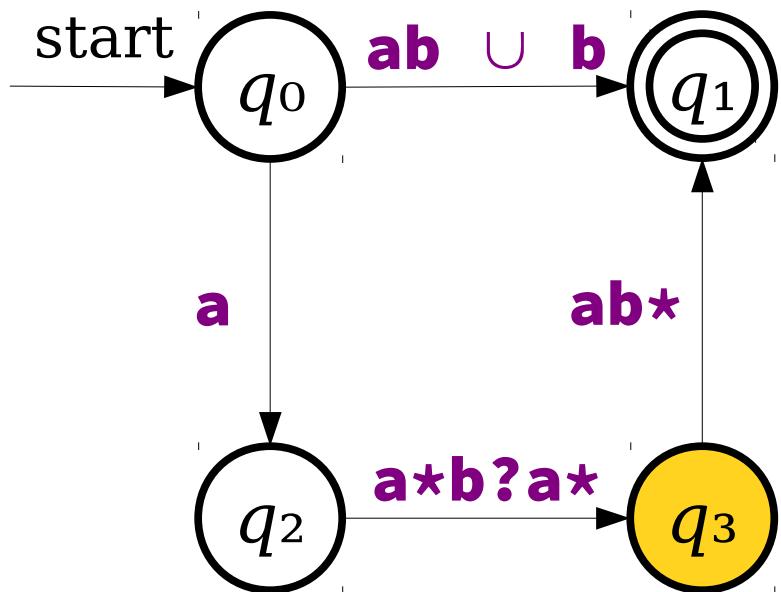
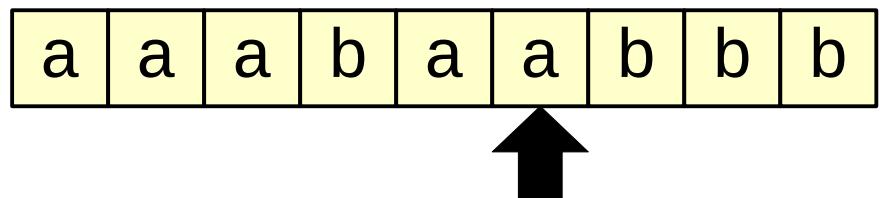
Generalizing NFAs



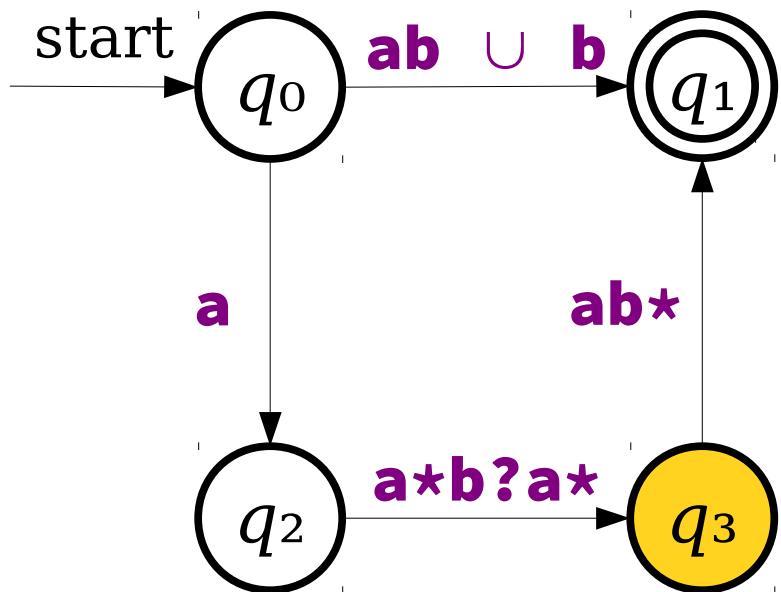
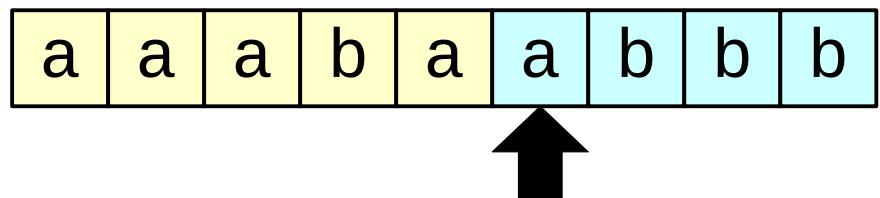
Generalizing NFAs



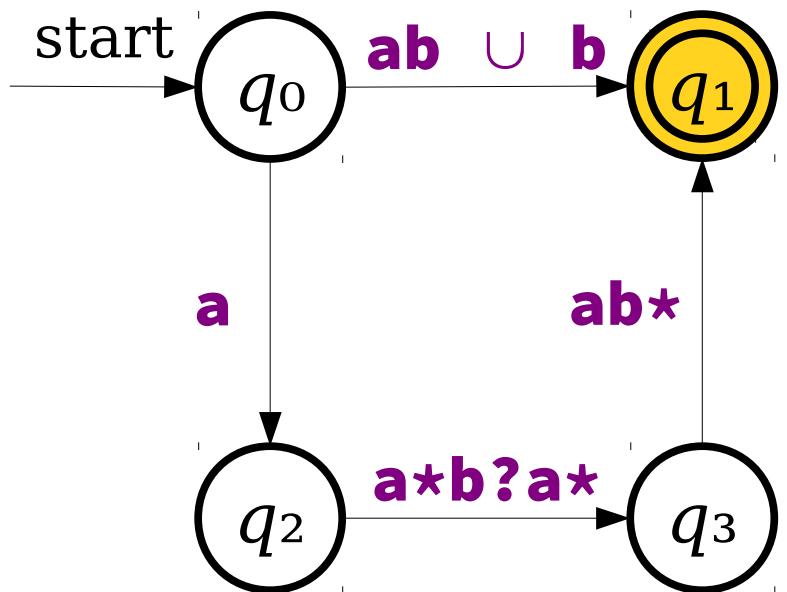
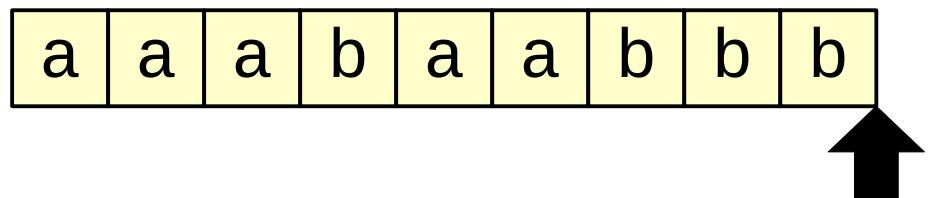
Generalizing NFAs



Generalizing NFAs



Generalizing NFAs



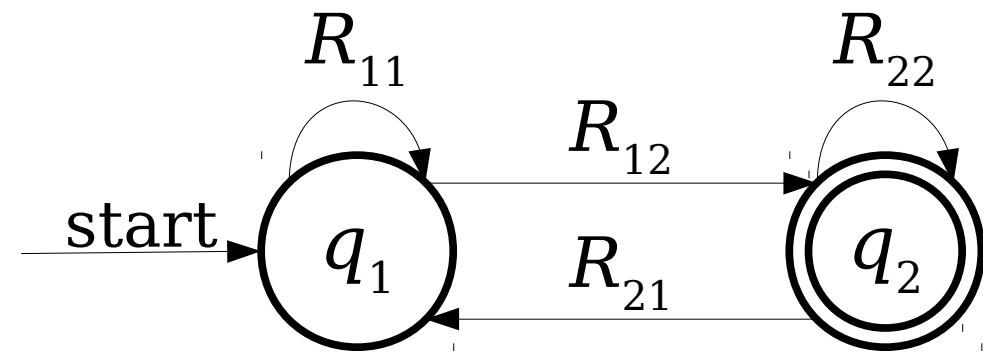
Key Idea 1: Imagine that we can label transitions in an NFA with arbitrary regular expressions.

Generalizing NFAs

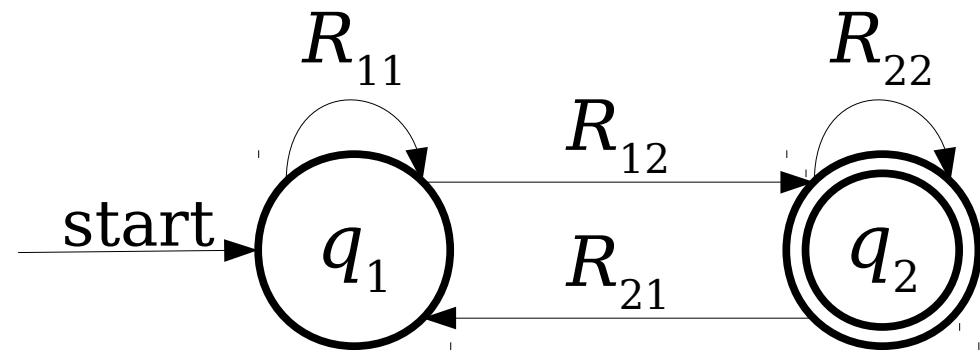
Key Idea 2: If we can convert an NFA into a generalized NFA that looks like this...

...then we can easily read off a regular expression for the original NFA.

From NFAs to Regular Expressions

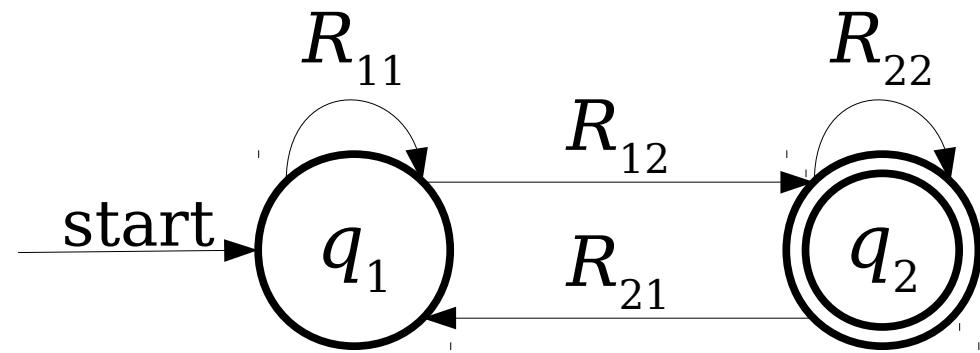


From NFAs to Regular Expressions



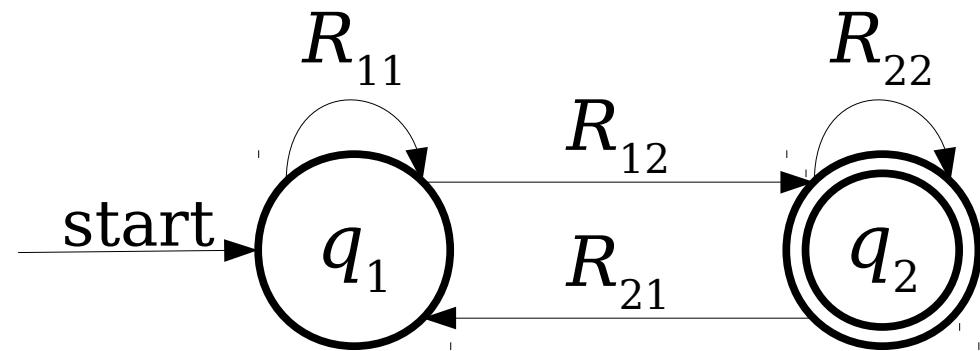
Here, R_{11} , R_{12} , R_{21} , and R_{22} are arbitrary regular expressions.

From NFAs to Regular Expressions



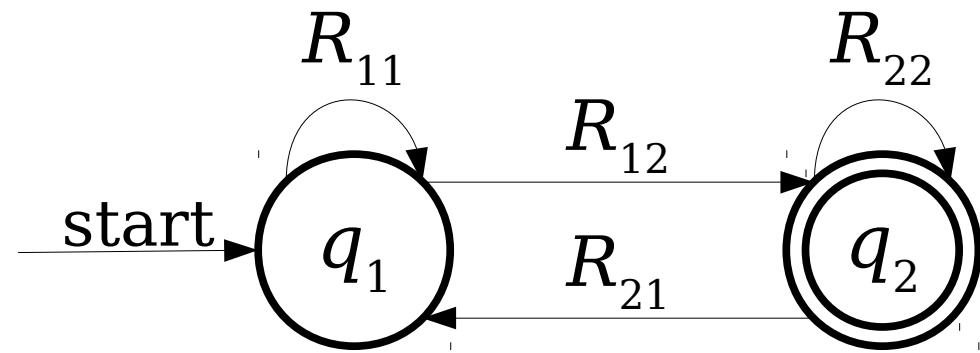
Question: Can we get a clean regular expression from this NFA?

From NFAs to Regular Expressions



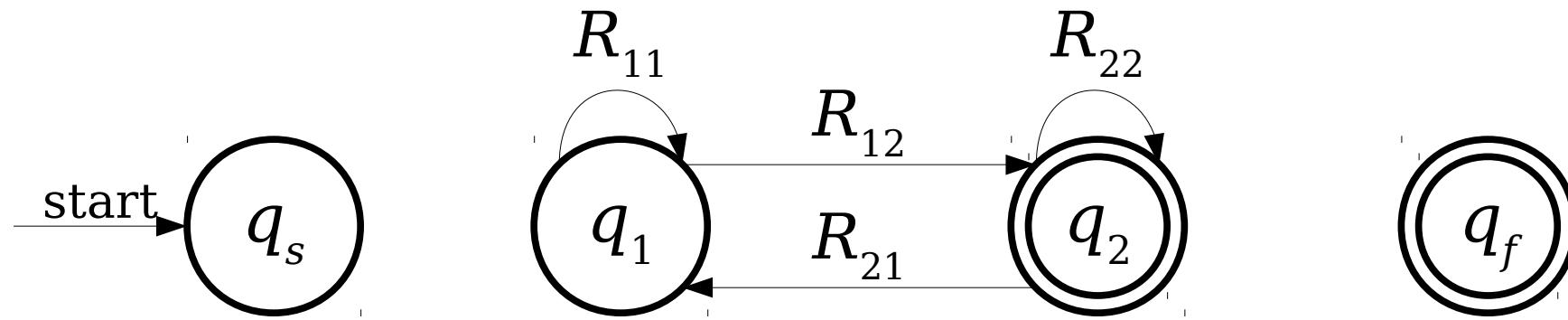
Key Idea 3: Somehow transform this NFA so that it looks like this:

From NFAs to Regular Expressions

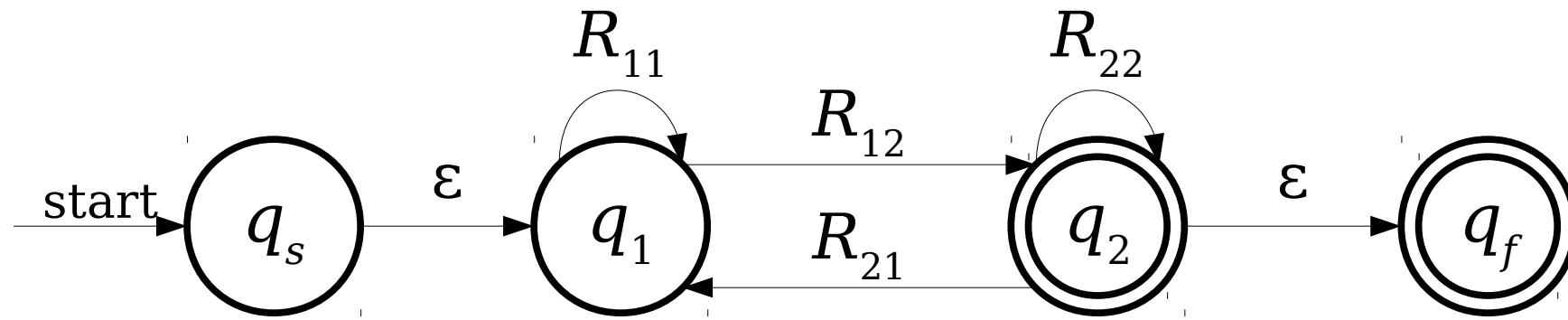


The first step is going to be a bit weird...

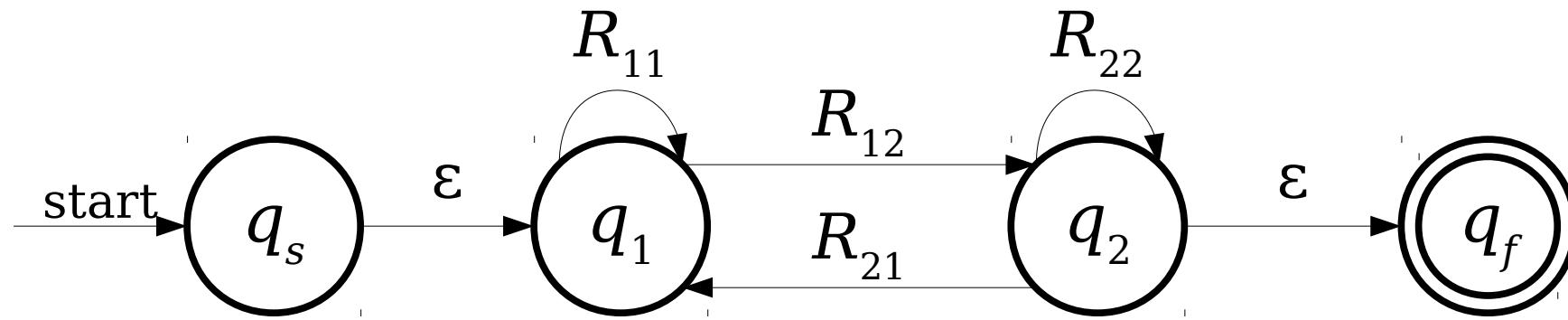
From NFAs to Regular Expressions



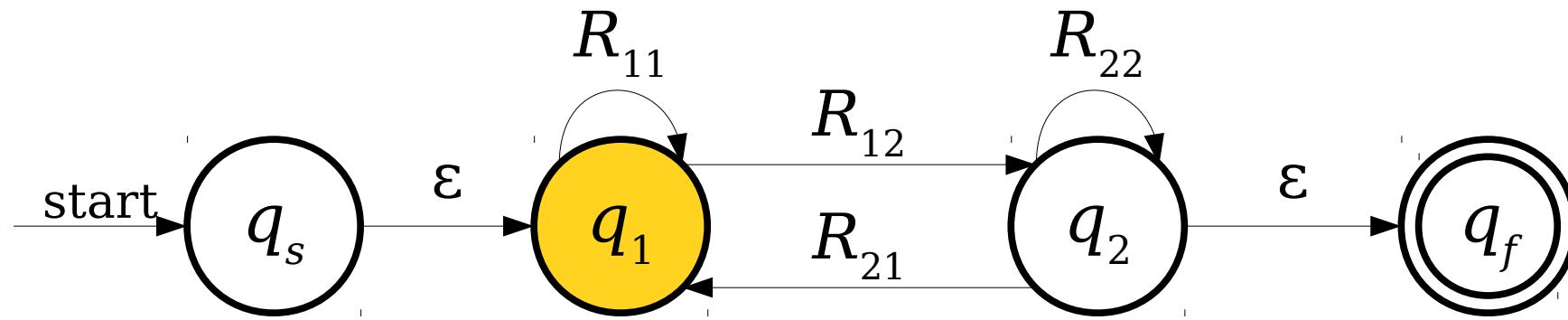
From NFAs to Regular Expressions



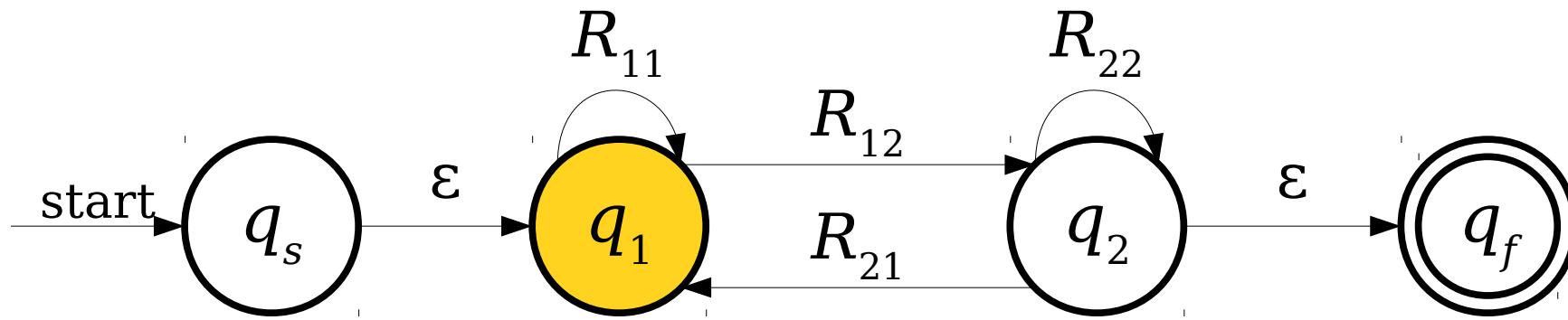
From NFAs to Regular Expressions



From NFAs to Regular Expressions

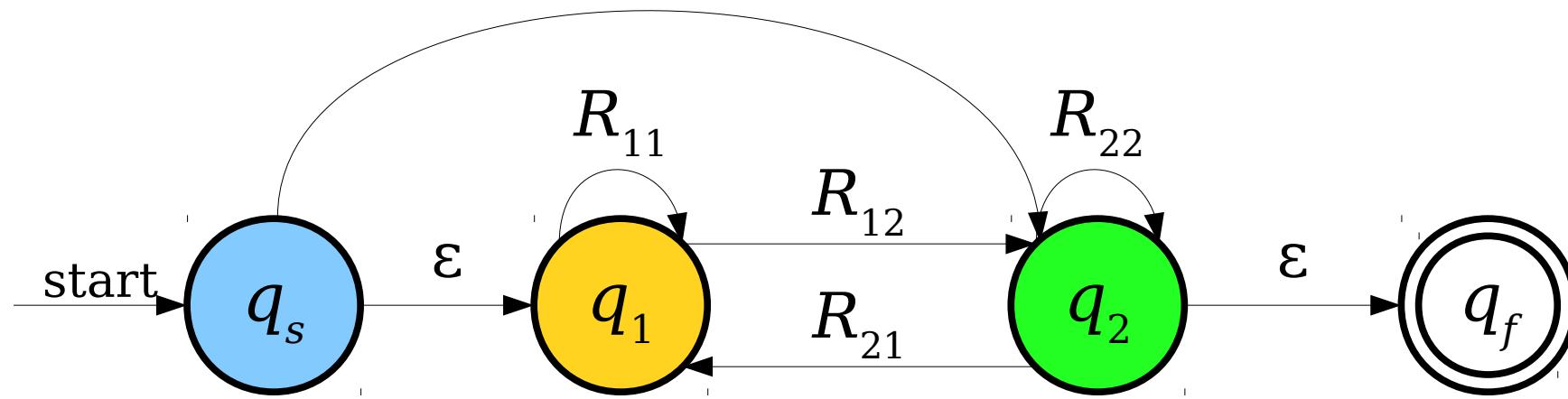


From NFAs to Regular Expressions

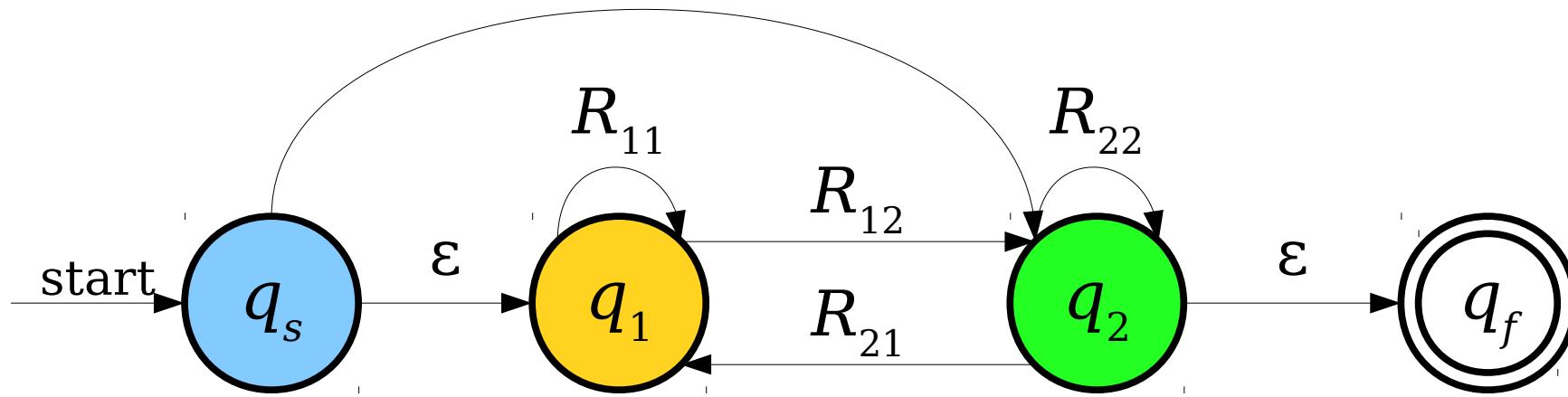


Could we eliminate
this state from the
NFA?

From NFAs to Regular Expressions

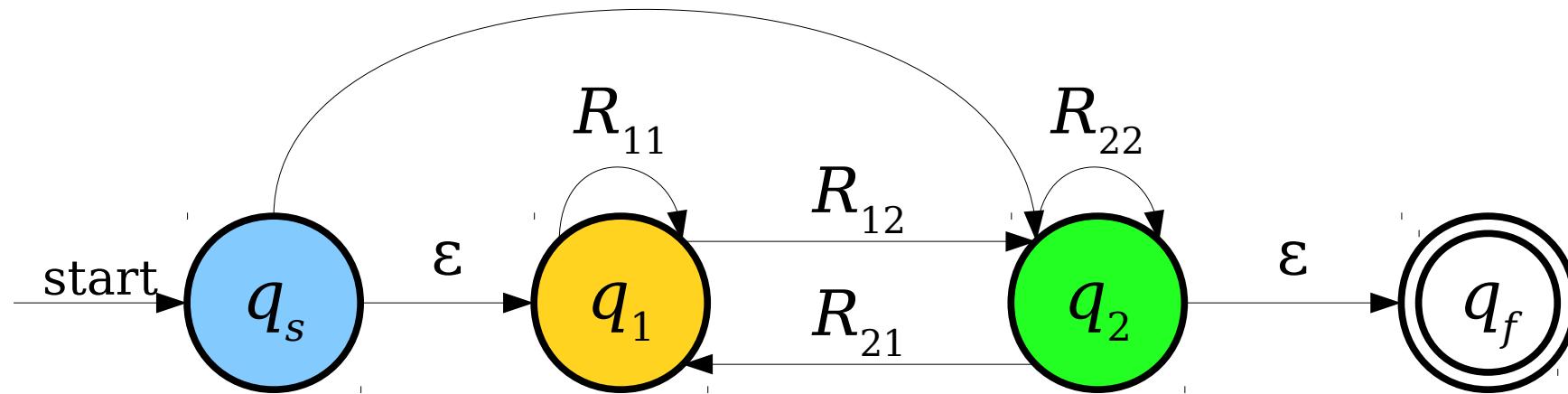


From NFAs to Regular Expressions



Here is a pattern that we might process
when going from q_s to q_2 : ϵR_{12}

From NFAs to Regular Expressions



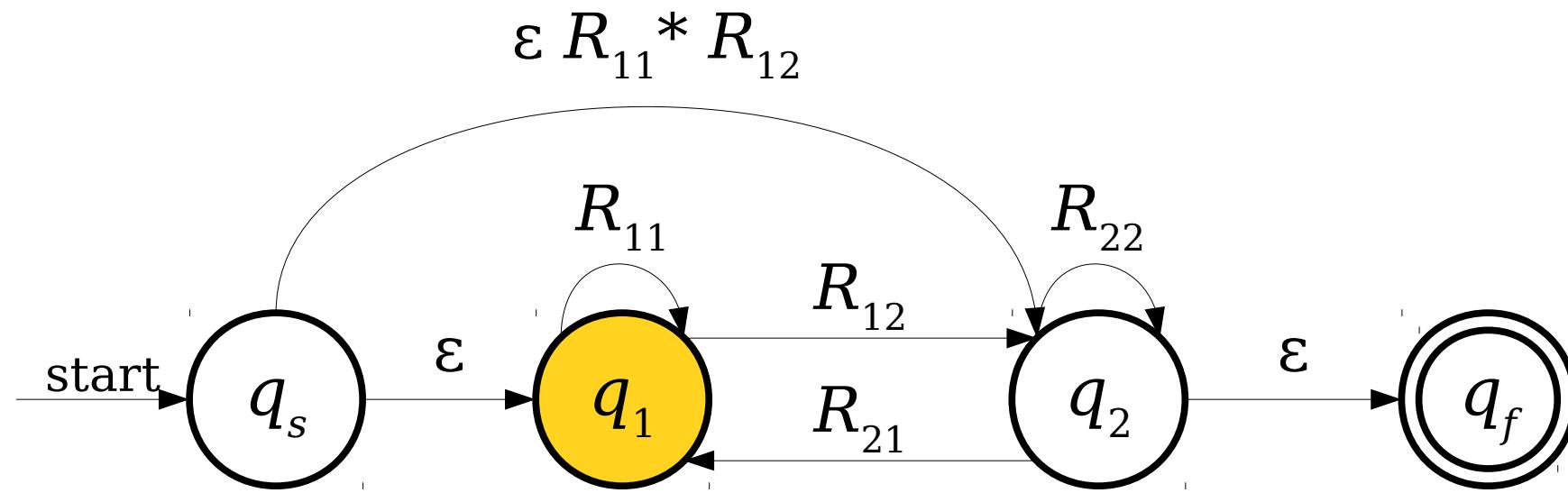
Here is a pattern that we might process when going from q_s to q_2 : ϵR_{12}

State elimination quick check:

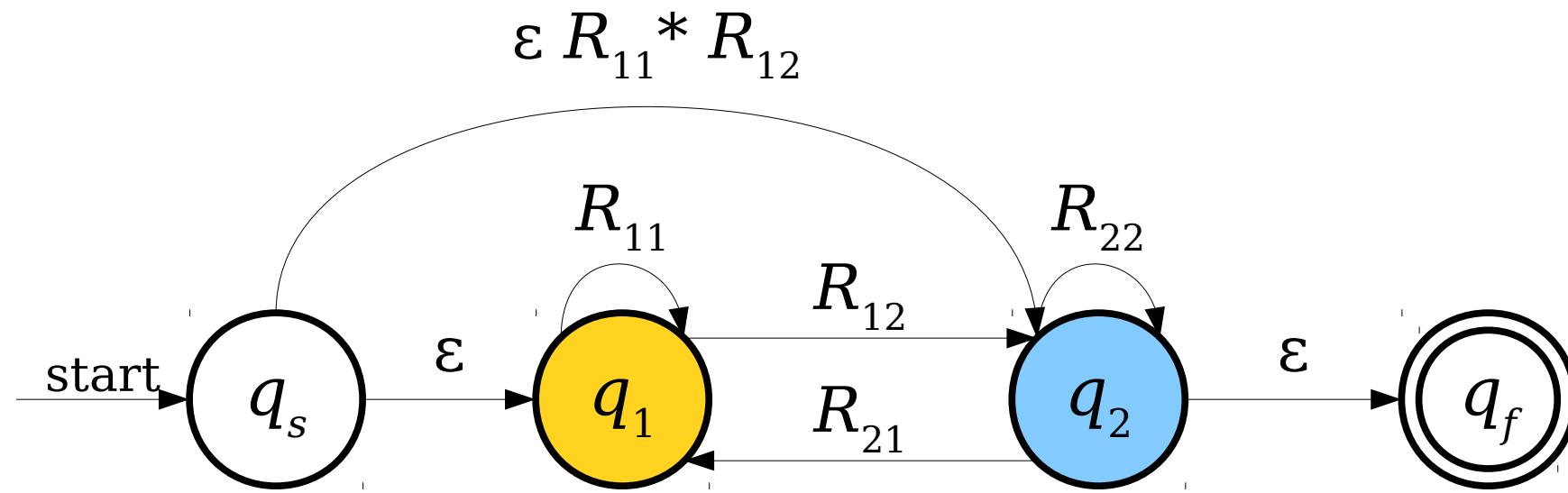
How many of the following are also patterns might we process when going from q_s to q_2 ?

- $\epsilon R_{11} R_{12}$
- $\epsilon R_{11} R_{11} R_{12}$
- $\epsilon R_{11} R_{12} R_{11}$
- $\epsilon R_{11} R_{12} R_{21}$
- $\epsilon R_{11} R_{12} R_{21} R_{11} R_{12}$

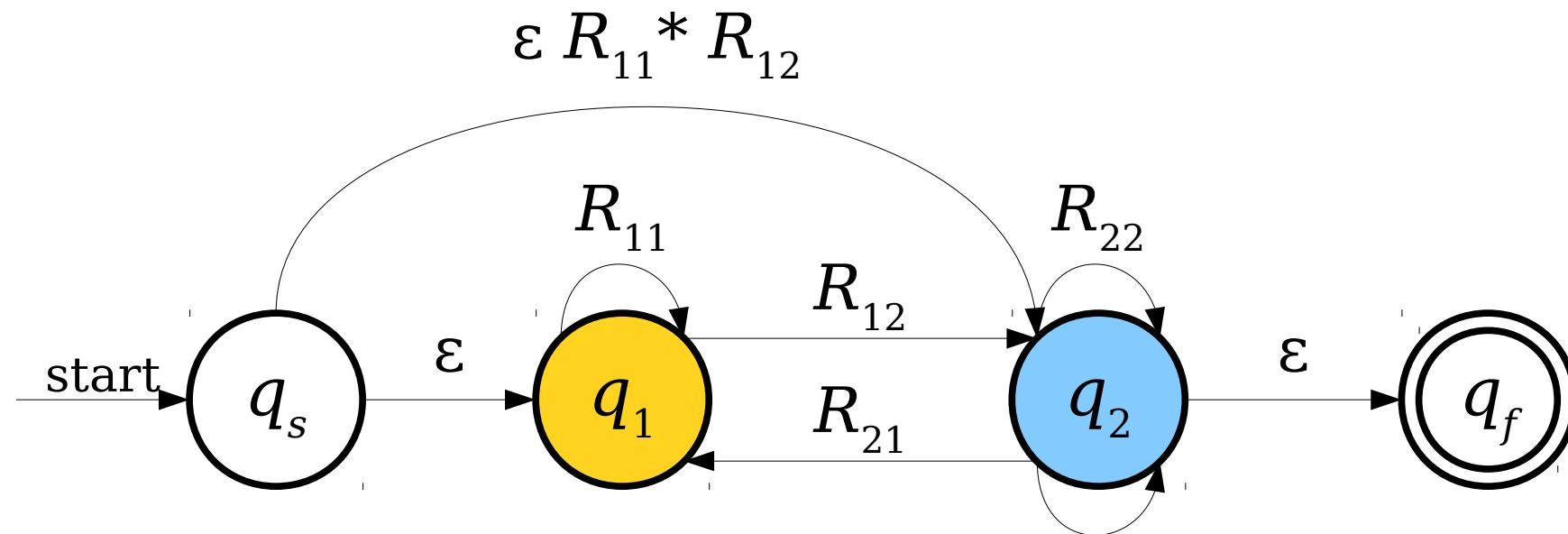
From NFAs to Regular Expressions



From NFAs to Regular Expressions



From NFAs to Regular Expressions

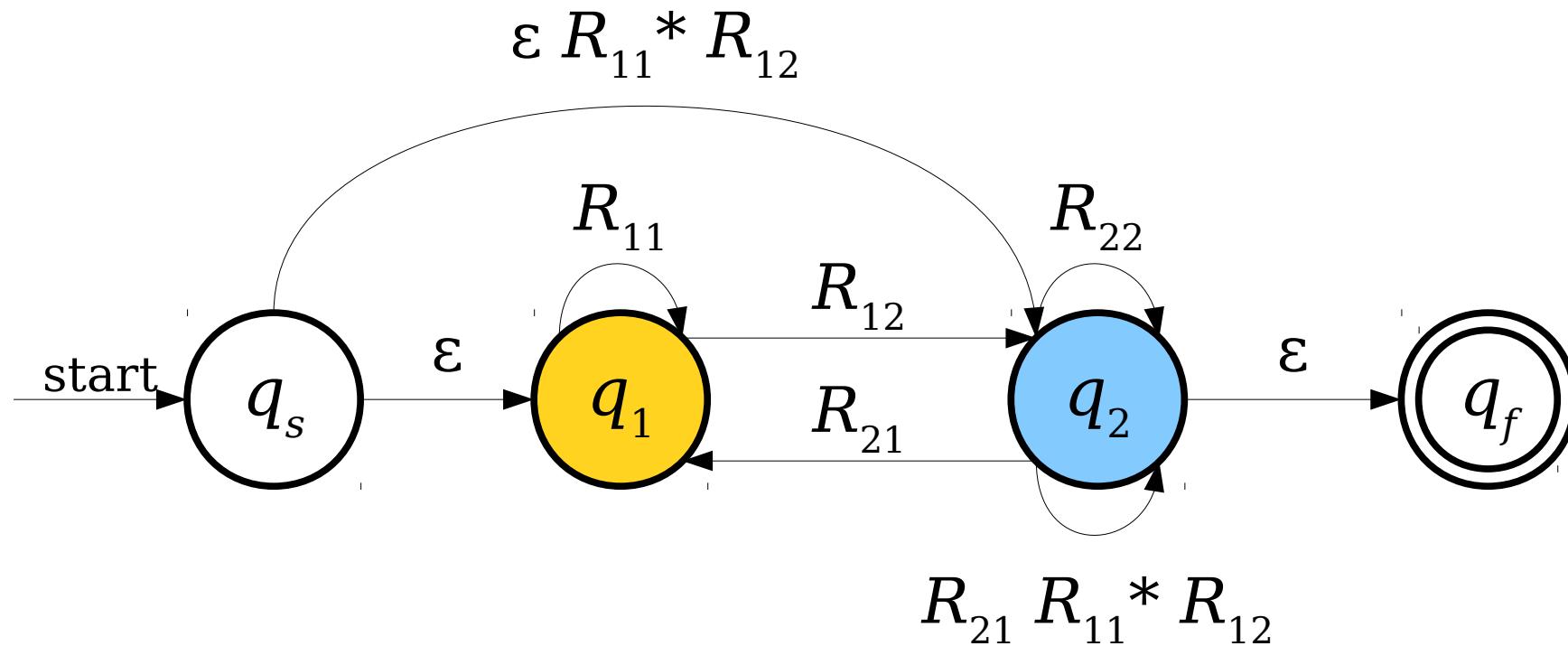


From NFAs to Regular Expressions



Here is a pattern that we might process
when going from q_2 to q_2 : $\mathbf{R}_{21} \mathbf{R}_{11} \mathbf{R}_{12}$

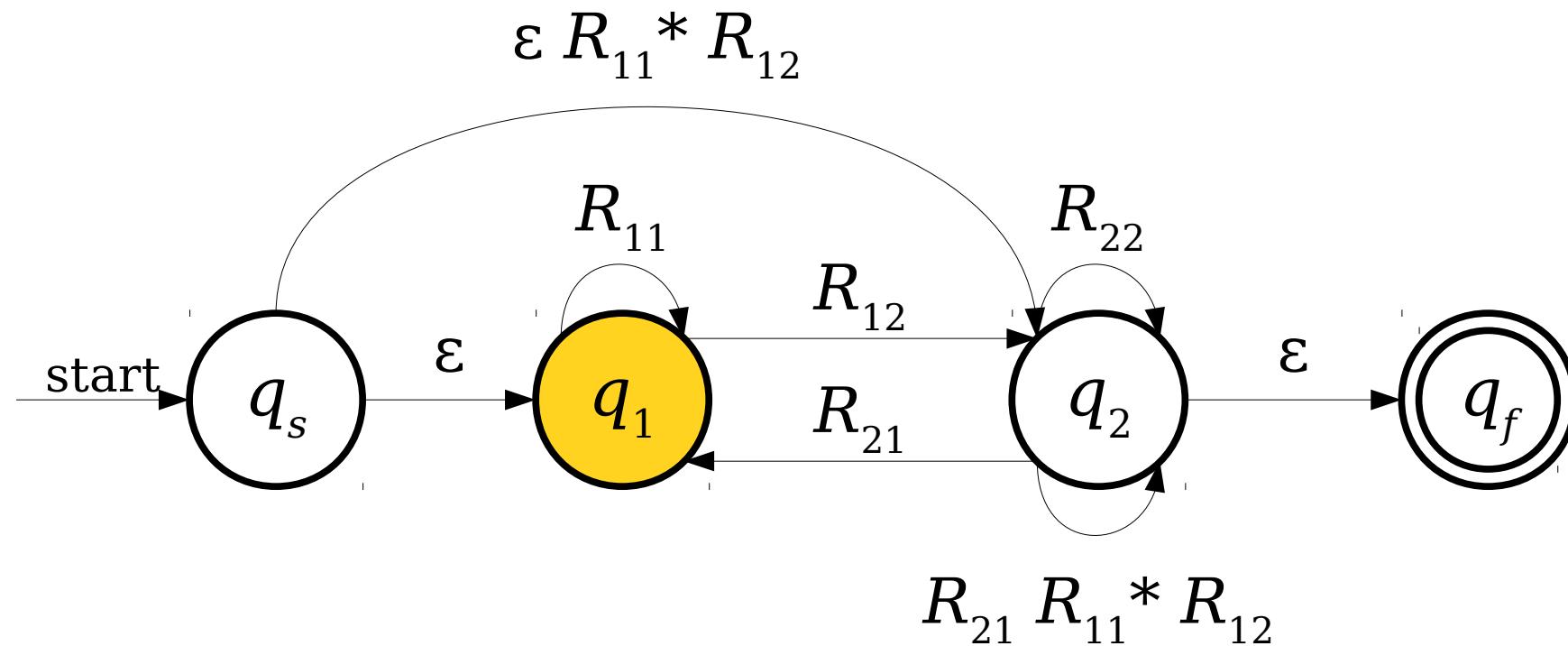
From NFAs to Regular Expressions



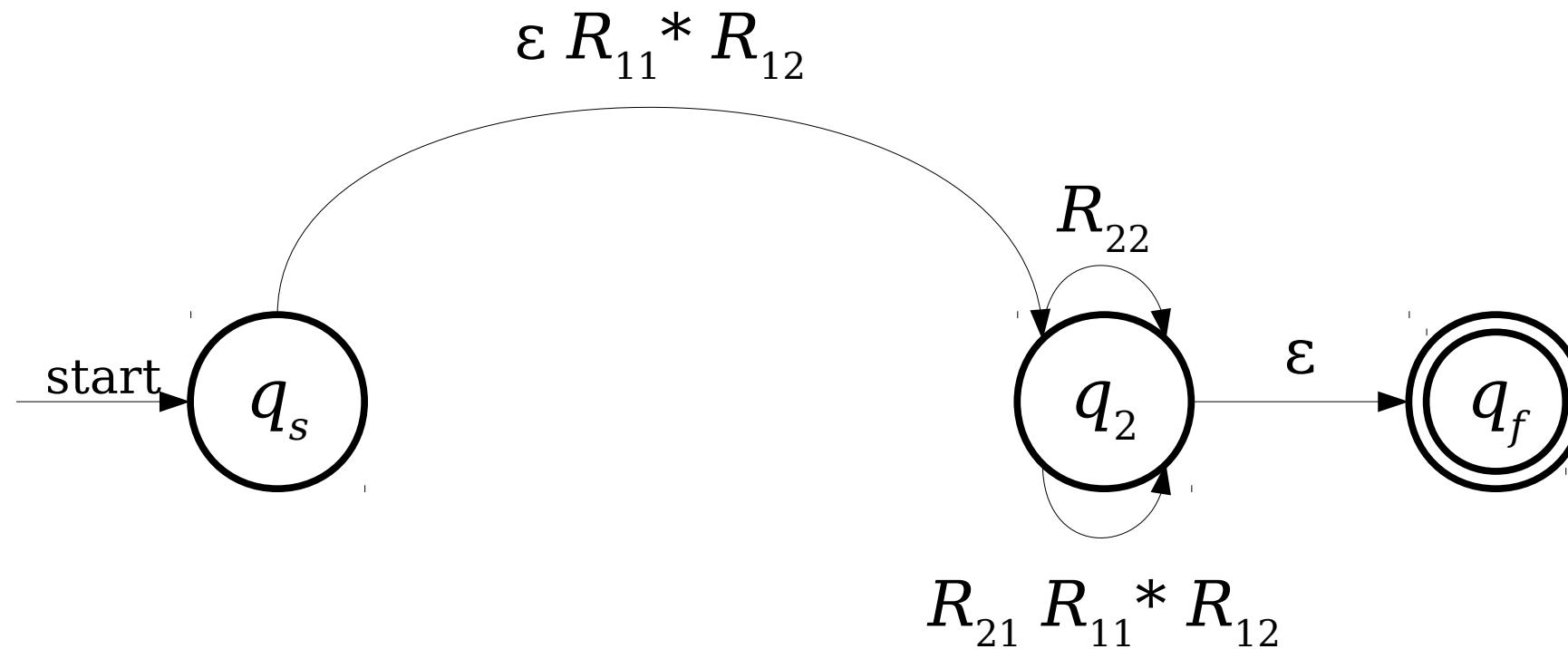
Here is a pattern that we might process

when going from q_2 to q_2 : $R_{21} R_{11} R_{12}$

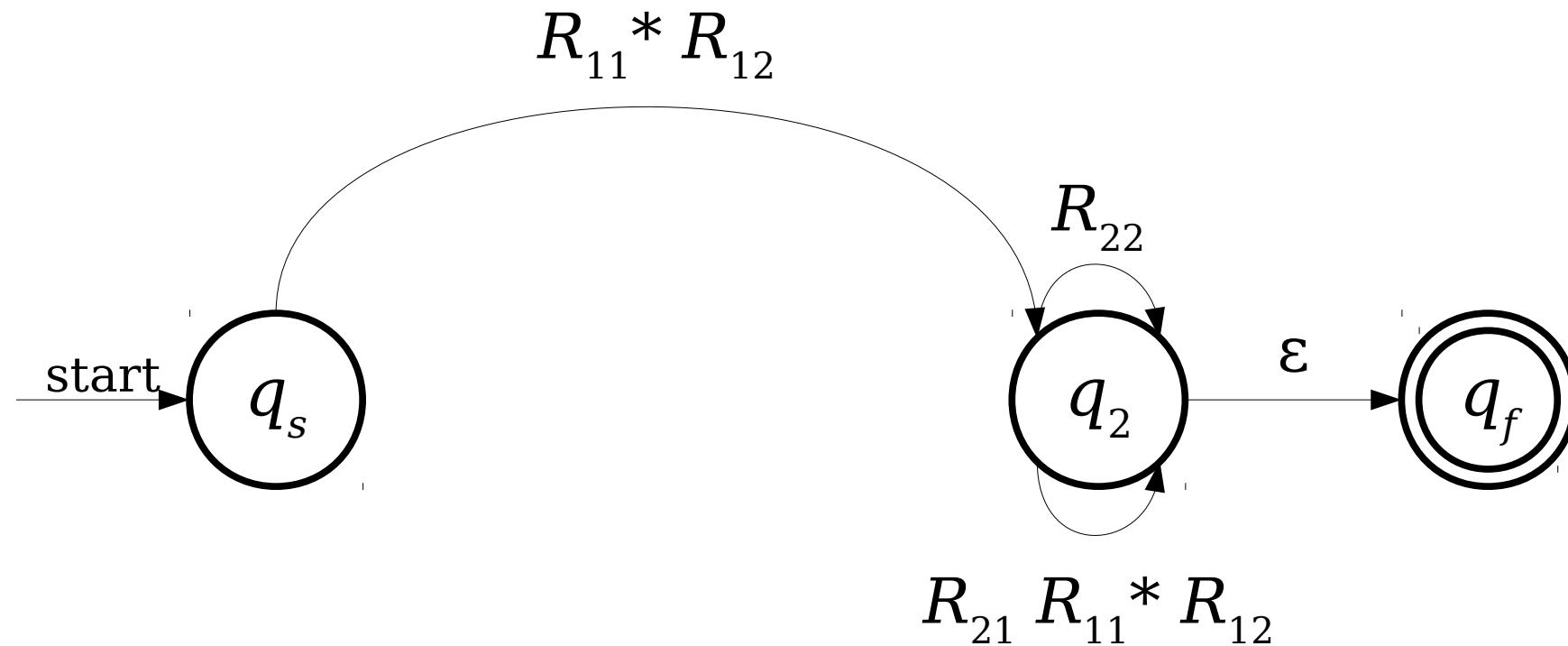
From NFAs to Regular Expressions



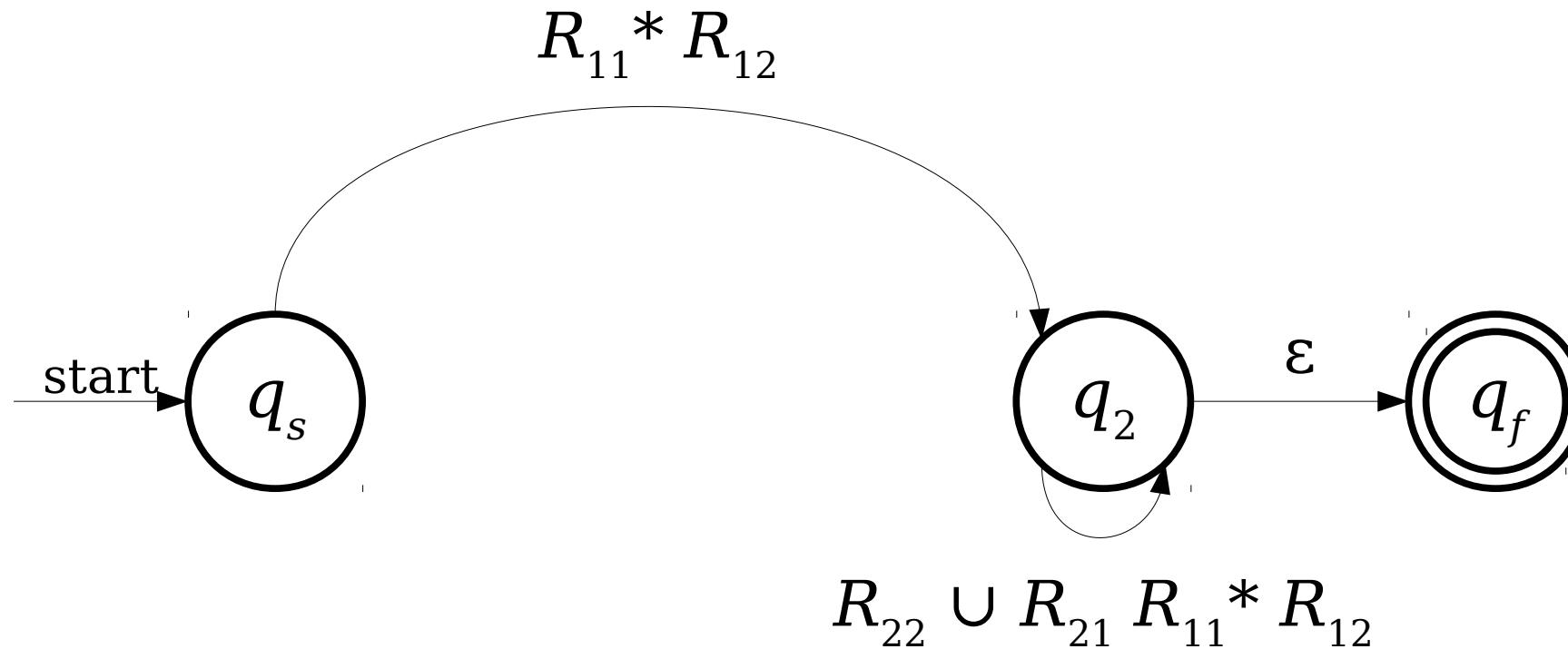
From NFAs to Regular Expressions



From NFAs to Regular Expressions

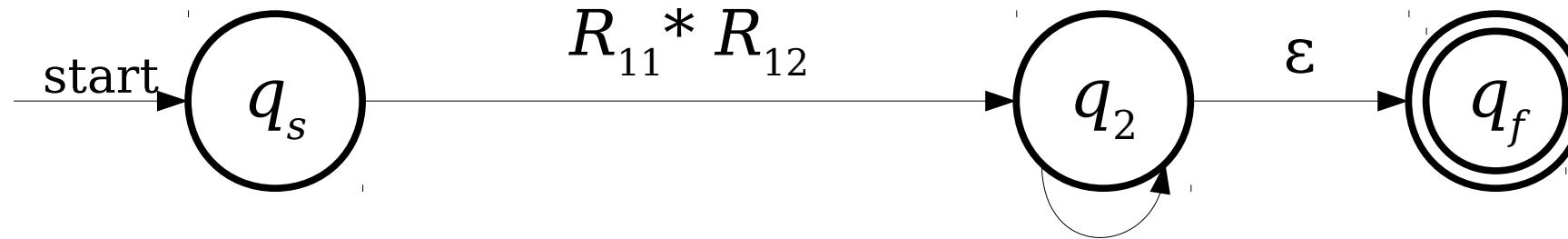


From NFAs to Regular Expressions



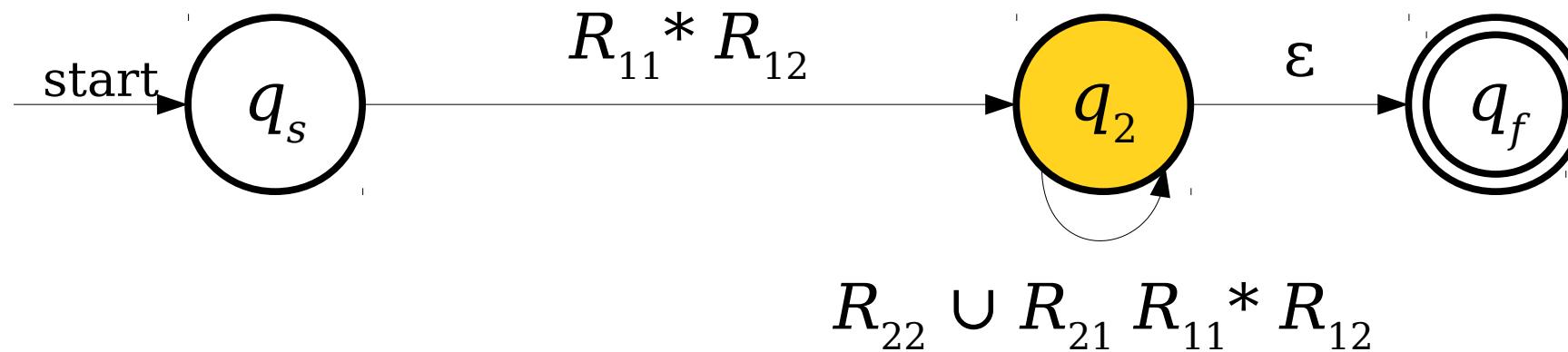
Note: We're using **union** to combine these transitions together.

From NFAs to Regular Expressions

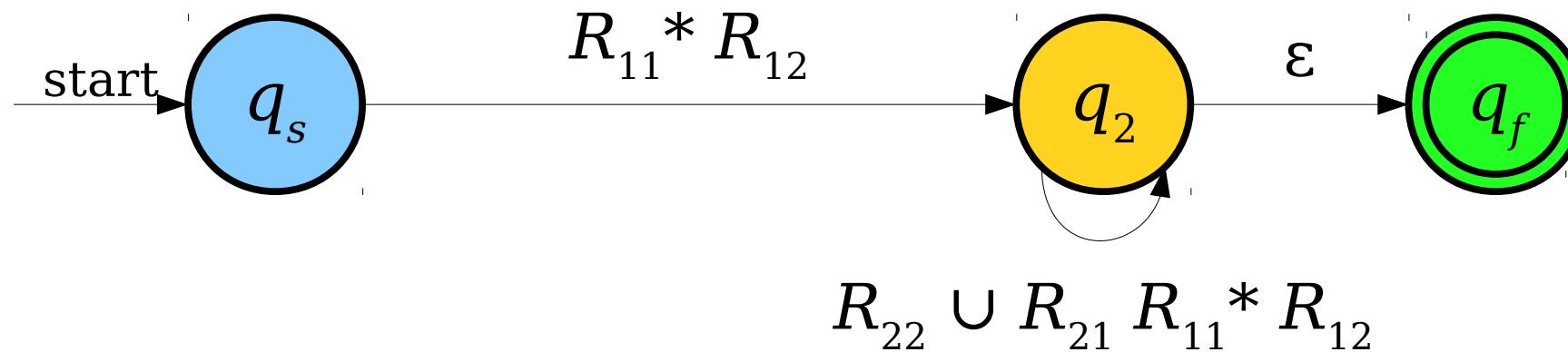


$$R_{22} \cup R_{21} R_{11}^* R_{12}$$

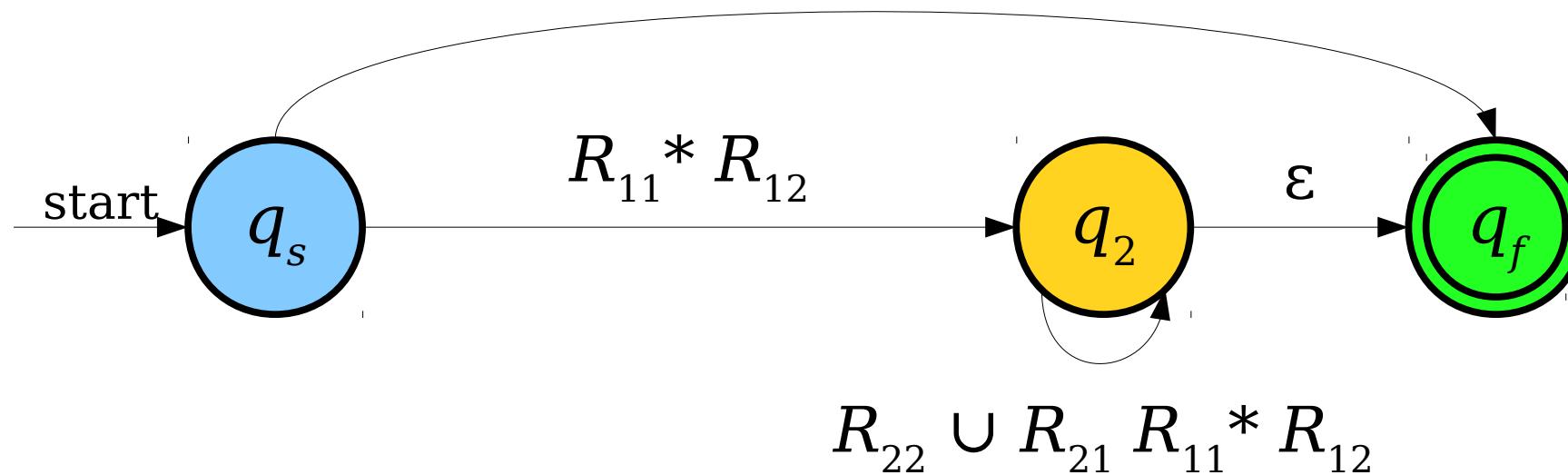
From NFAs to Regular Expressions



From NFAs to Regular Expressions

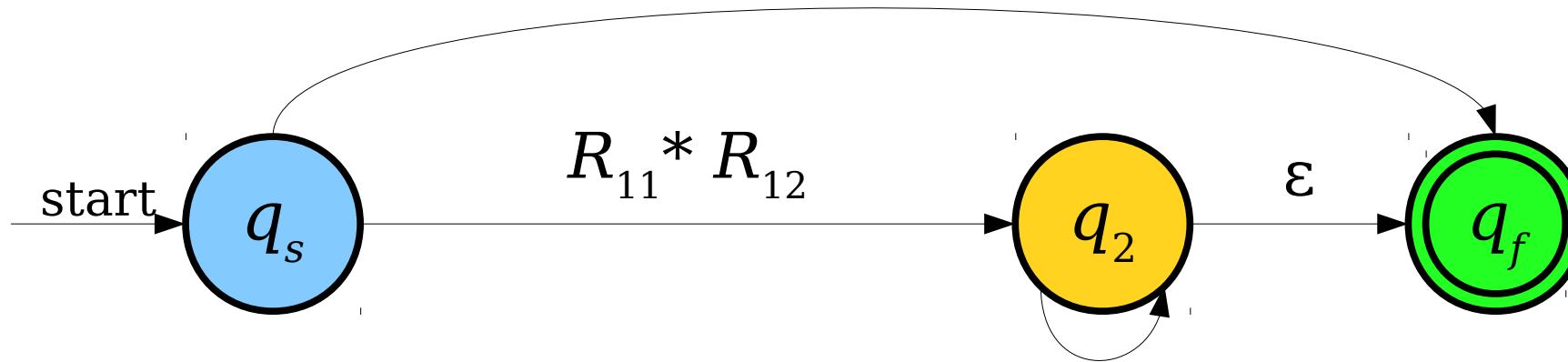


From NFAs to Regular Expressions



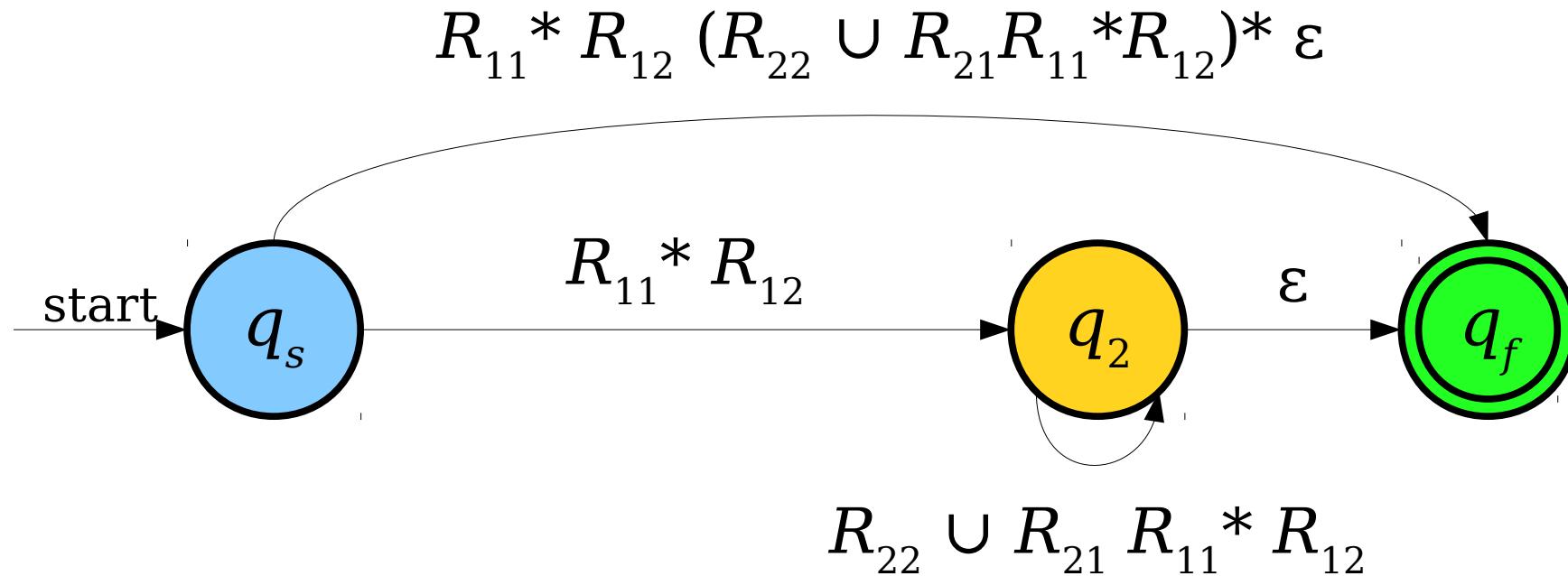
From NFAs to Regular Expressions

Quick check: what goes on this transition?

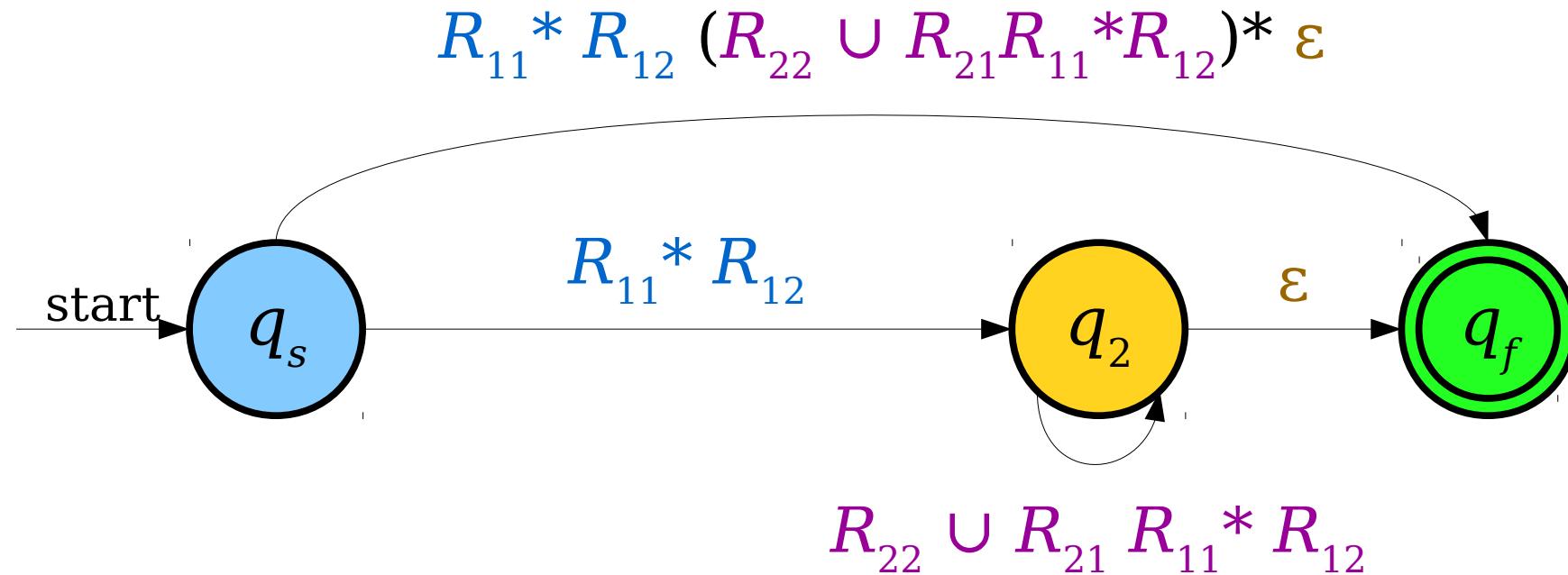


$$R_{22} \cup R_{21} R_{11}^* R_{12}$$

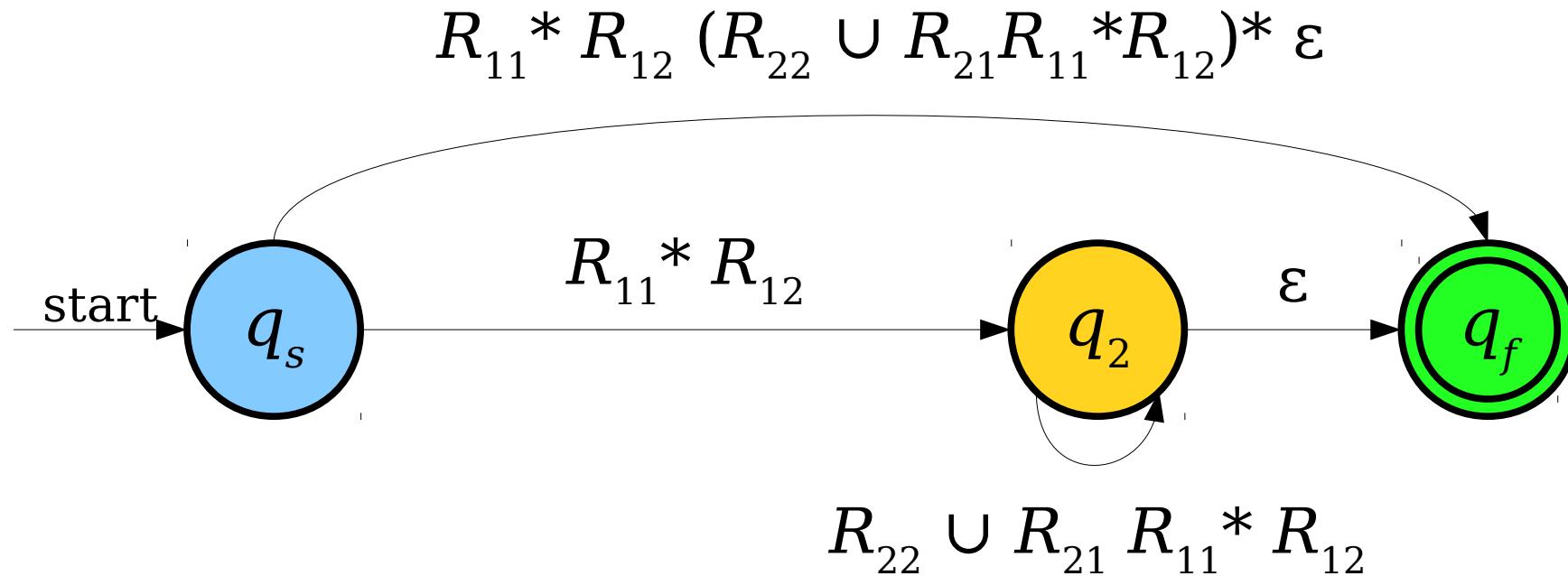
From NFAs to Regular Expressions



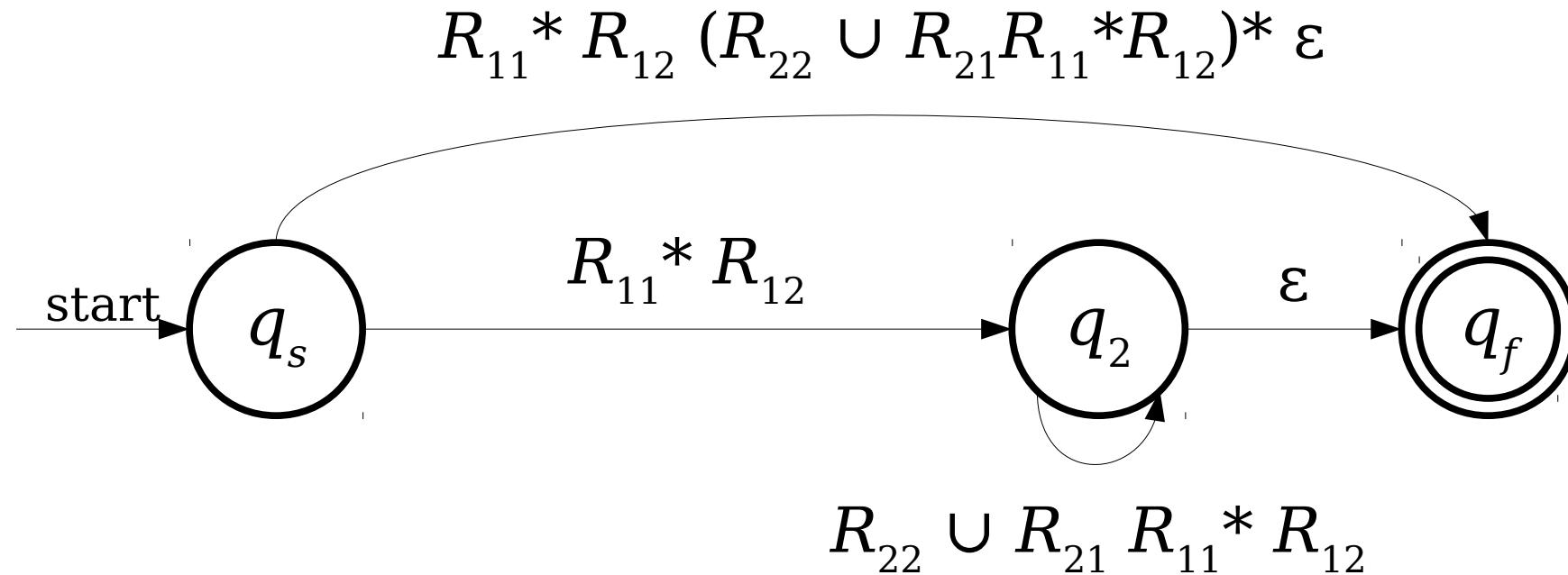
From NFAs to Regular Expressions



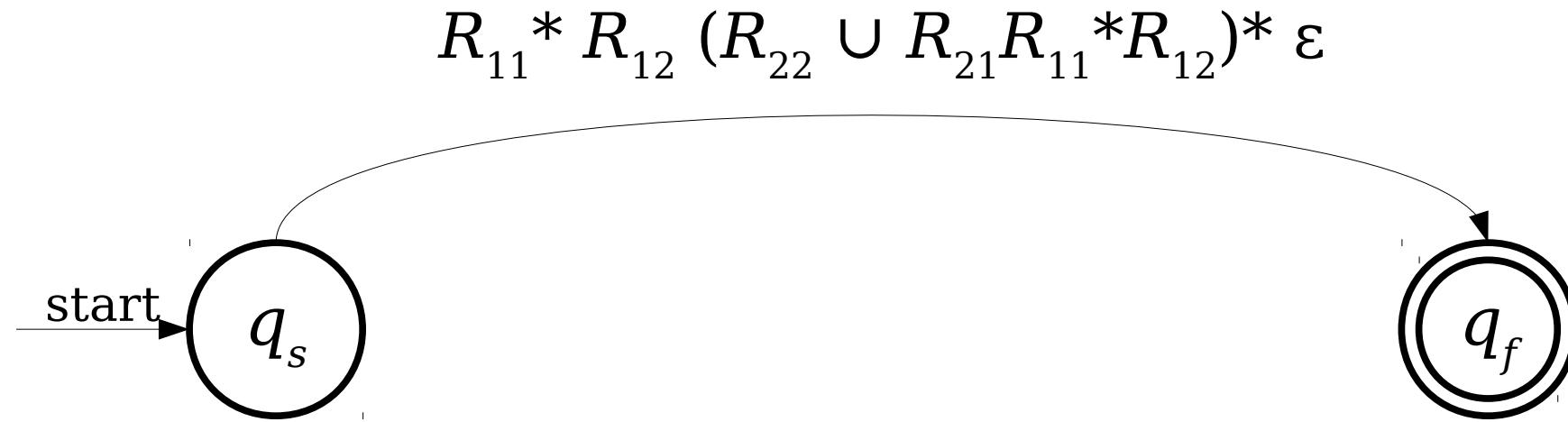
From NFAs to Regular Expressions



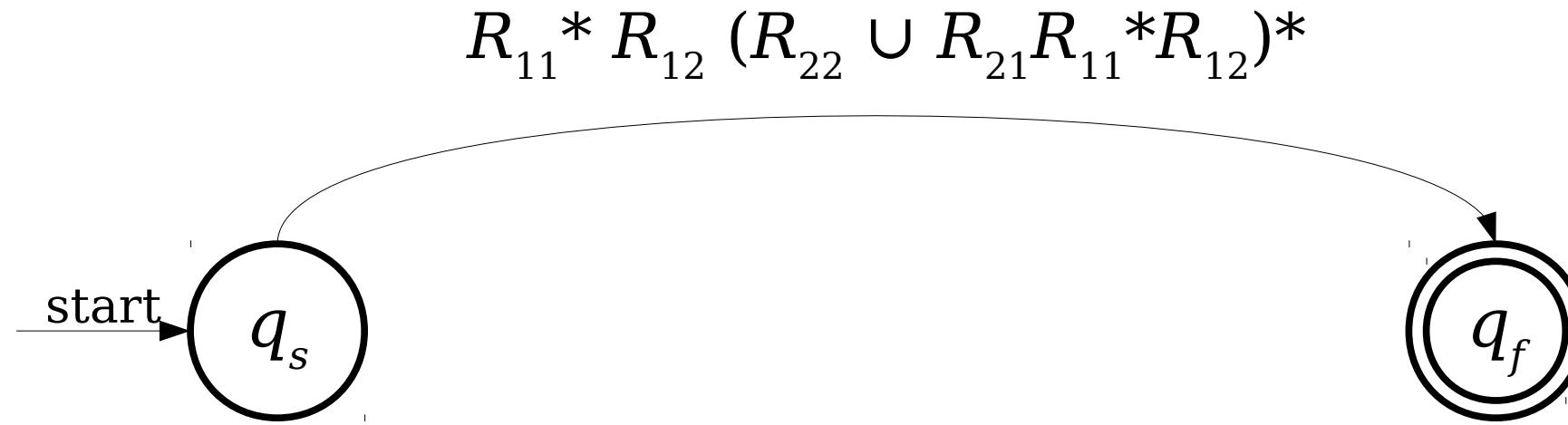
From NFAs to Regular Expressions



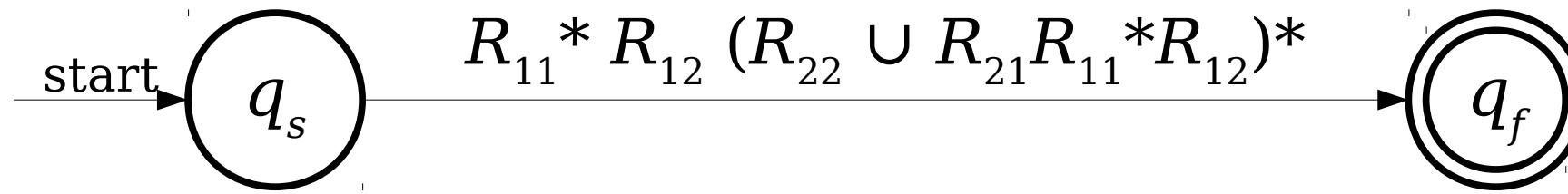
From NFAs to Regular Expressions



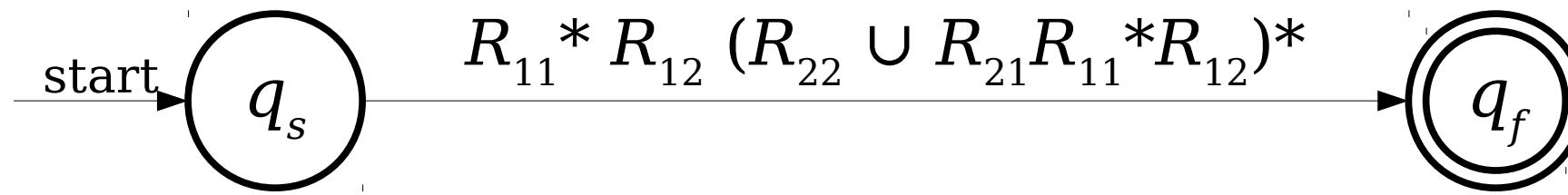
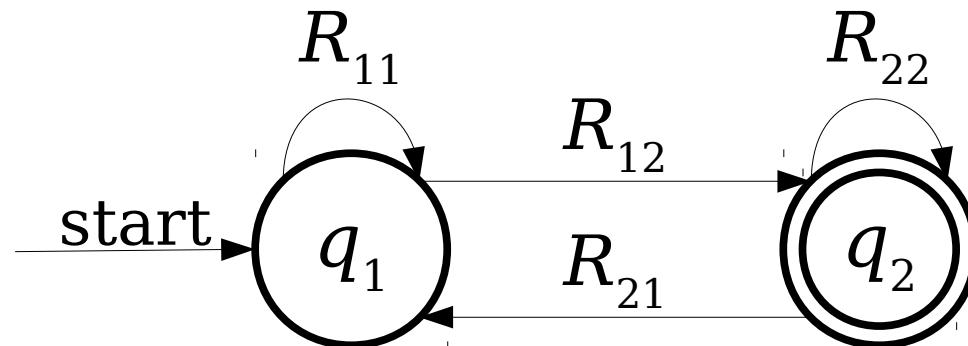
From NFAs to Regular Expressions



From NFAs to Regular Expressions



From NFAs to Regular Expressions



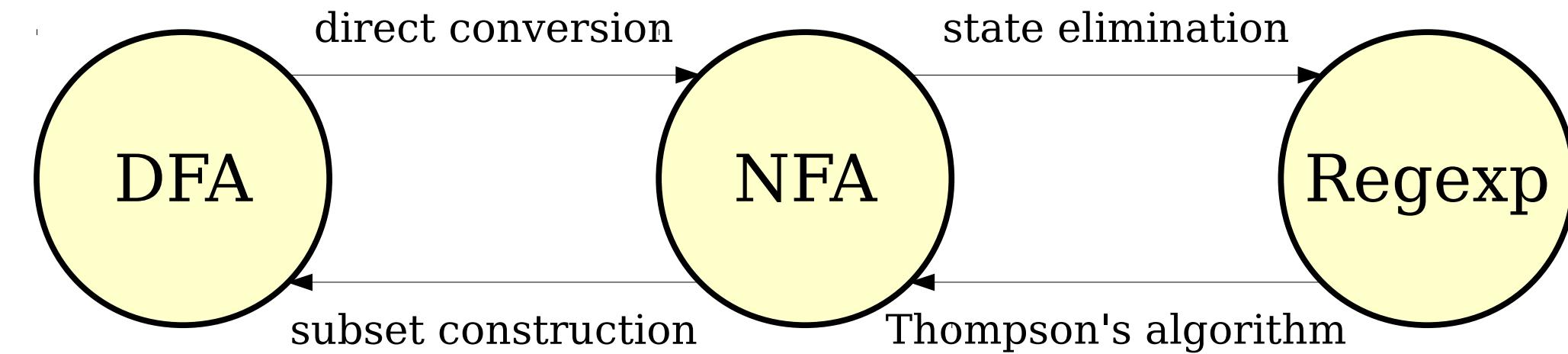
The State-Elimination Algorithm

- Start with an NFA N for the language L .
- Add a new start state q_s and accept state q_f to the NFA.
 - Add an ε -transition from q_s to the old start state of N .
 - Add ε -transitions from each accepting state of N to q_f , then mark them as not accepting.
- Repeatedly remove states other than q_s and q_f from the NFA by “shortcutting” them until only two states remain: q_s and q_f .
- The transition from q_s to q_f is then a regular expression for the NFA.

The State-Elimination Algorithm

- To eliminate a state q from the automaton, do the following for each pair of states q_0 and q_1 , where there's a transition from q_0 into q and a transition from q into q_1 :
 - Let R_{in} be the regex on the transition from q_0 to q .
 - Let R_{out} be the regex on the transition from q to q_1 .
 - If there is a regular expression R_{stay} on a transition from q to itself, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{stay})^*(R_{out}))$.
 - If there isn't, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{out}))$
- If a pair of states has multiple transitions between them labeled R_1, R_2, \dots, R_k , replace them with a single transition labeled $R_1 \cup R_2 \cup \dots \cup R_k$.

Our Transformations



Theorem: The following are all equivalent:

- L is a regular language.
- There is a DFA D such that $\mathcal{L}(D) = L$.
- There is an NFA N such that $\mathcal{L}(N) = L$.
- There is a regular expression R such that $\mathcal{L}(R) = L$.

Why This Matters

- The equivalence of regular expressions and finite automata has practical relevance.
 - Regular expression matchers have all the power available to them of DFAs and NFAs.
- This also is hugely theoretically significant: the regular languages can be assembled “from scratch” using a small number of operations!

Next Time

- *Applications of Regular Languages*
 - Answering “so what?”
- *Intuiting Regular Languages*
 - What makes a language regular?
- *The Myhill-Nerode Theorem*
 - The limits of regular languages.